NAVAL POSTGRADUATE SCHOOL
Monterey, California

Lo [B

TESTING OF A READ PREDICTION BUFFER
INTEGRATED CIRCUIT AND DESIGN OF A
PREDICTIVE READ CACHE
by
Max E. Aguilar F.

March 1995

Thesis Co-Advisors: Douglas J. Fouts
Timothy Shimeall

Approved for public release; distribution is unlimited.

10050816 068 e

Form Approved

REPORT DOCUMENTATION PAGE OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time reviewing instructions, searching existing data sources
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

e ————— —— Ty s mg
1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE 3. REPORT TYPE AND PATES COVERED
March 1995 Master’s Thesis
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

TESTING OF A READ PREDICTION BUFFER INTEGRATED
CIRCUIT AND DESIGN OF A PREDICTIVE READ CACHE

6. AUTHOR(S)

AGUILAR, Max Enrique
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER
Naval Postgraduate School
Monterey, CA 93943-5000
9. SPONSORING/ MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/ MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES |
The views expressed in this thesis are those of the author and do not reflect the official policy or position

of the Department of Defense or the United States Government.

12a. DISTRIBUTION / AVAILABIEITY STATEMENT. 12b. DISTRIBUTION CODE
Approved for public release; distribution is unlimited.

13. ABSTRACT (Maximum 200 words)

The objective of this research work was to evaluate and test the Read Prediction Buffer integrated
circuit (IC). This IC attempts to decrease main-memory latency by predicting the next data cache read
miss address and pre-fetching the data before the miss actually occurs in the cache. The motivation for its
testing is that, if correct, the chip will significantly improve the speed of imbedded microprocessors which
are so prevalent in modern equipment.

The approach taken, was to place the RPB between a Pattern Generator Module and a State- Timing
logic Analysis Module. The pattern generator was programmed to generate test cases. The output signals
of this module were applied to the input pins of the chip. The chip’s response was then captured and
analyzed using the logic analysis module. Results showed that the chip worked correctly and fully |
implemented the intended algorithm. However, an evaluation of its architecture indicated two major
problems; a) The RPB provides an additional level of latency to the memory structure when a predicted

14. SUBJECT TERMS]) i - 15. NUMBER OF PAGES
VLSI (very large scale integration) design; memory address prediction; 154
VERILOG; EPOCH; CMOS; cache performance improvement. 76, PRICE CODE

17. SECURITY CLASSIFICATION [16. SECURITY CLASSIFICATION . J19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

Unclassified Unclassified Unclassified UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

i : Prescribed by ANSI Std. 239-18

SECURITY CLASSIFICATION OF THIS PAGE

13. Abstract (continue)

address is in error, b) Every time there is a displacement change (which occurs at branches) the RPB predicted address
will be in error.

These two factors forced the redesign of the RPB, giving birth to the Predictive Read Cache. In the PRC, the first
problem was solved by reallocating the chip’s position in the memory hierarchy. The IC was converted from a memory
controller device to a snooping device. The second problem was eliminated by increasing the number of predictive
lines from 1 to 128. This means that the PRC is now able to track 128 different displacements.

SECURITY CLASSIFICATION OF THIS PAGE
UNCLASSIFIED

Approved for public release; distribution is unlimited

TESTING OF A READ PREDICTION BUFFER
INTEGRATED CIRCUIT AND DESIGN OF A
PREDICTIVE READ CACHE

by

Max E. Aguilar F.
Lieutenant J.G, Honduran Navy
B.S., US Naval Academy, 1988

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING
AND COMPUTER SCIENCE

from the
NAVAL POSTGRADUATE SCHOOL

March 1995

Author: o e @ -\@ﬂ

ax E Aguilar F.

Approved By: }}M 4} / % g

Douﬁas Fouts, Thesis Co-Advisor

il D

Timothy SHinieall, Thesis Co-Advisor

ddwi

Ted Lewis, Chairman
Department of Computer Science

/T G (7Y onga—

Michael A. Morgan, C%irman
Department of Electrical And Computer Engineering

iii

£
£
y

B e A e e W

ABSTRACT

The objective of this research work was to evaluate and test the Read Prediction Buffer
integrated circuit (IC). This IC attempts to decrease main-memory latency by predicting the next
data cache read miss address and pre-fetching the data before the miss actually occurs in the
cache. The motivation for its testing is that, if correct, the chip will significantly improve the
speed of imbedded microprocessors which are so prevalent in modem equipment.

The approach taken, was to place the RPB between a Pattern Generator Module and a State-
Timing logic Analysis Module. The pattern generator was programmed to generate test cases.
The output signals of this module were applied to the input pins of the chip. The chip’s response
was then captured and analyzed using the logic analysis module. Results showed that the chip
worked correctly and fully implemented the intended algorithm. However, an evaluation of its
architecture indicated two major problems; a) The RPB provides an additional level of latency
to the memory structure when a predicted address is in error, b) Every time there is a
displacement change (which occurs at branches) the RPB predicted address will be in error.

These two factors forced the redesign of the RPB, giving birth to the Predictive Read Cache.
In the PRC, the first problem was solved by reallocating the chip’s position in the memory
hierarchy. The IC was converted from a memory controller device toa snooping device. The
second problem was eliminated by increasing the number of predictive lines from 1 to 128. This

means that the PRC is now able to track 128 different displacements.

TABLE OF CONTENTS

L INTRODUCTION. .. it i it ittt i et ennenneans 1
A. THEORY OF OPERATION oottt ittt eiiae e 1
B. ENHANCEMENT S i i i it 3
C. RESEARCH GOALS. ... i i st et e 5
D. REQUIRED EQUIPMENT AND CADTOOLS 5

1. Hewlett-Packard Logic Analysis System 6

a. AcquisitionBoard i i, 6
b.StimulusBoardsc i i i e 6

2. Sun SPARGCStations .. .vovttiie ittt 6

3. Mentor Graphics’ Design Architectccvviiunena... 7

4. Cadence’s Verilog-XL ... oivtiiin ittt it iiieenennnnn 7

5. Cascade’sEpoch3.1.... ... oot i, 7

E. THESISSTRUCTUREt ittt iie e 7

II. TESTING OF THE READ PREDICTIVEBUFFERCHIP 8
A. IMPLEMENTATION OF THEALGORITHM 8
B. PROCEDURE ittt ettt et i 11

I. TestBench Settingccciiiiiiiiiinininiinnnnnnn. 11
2. Generated Stimuluscovtntint it e i i 12
3. Data Acquisitionand Analysis..........ccoiiiiiiniinenn.... 12
A OVEIVIEW .. ittt ittt it i i ittt 16
b. Section1..... S 17
C.SECHON 2 L\t i e i i i e 21
d o Section 3 e e 25
N o7 5 () o 26
foSection S ..o e 29
4, Other Tests .ottt ettt it eie i e, 30
a.FailingRate i, 30 .
b.Latchup e 31
c.NoiseMarginsciiiieenninennennennnnn. 32
d. Power Dissipationcceveeunnernnrnnneennann 32

III. FUNDAMENTAL BLOCK DESIGNSOFTHEPRCc...... 33
A, SYSTEM OVERVIEWttt ittt e i iieeeeainanannns 33
B. THE SNOOPINGMODULE.cuiiiititrtniiiiinnnnnnnnnn. 36
C. THEHITDETECTIONMODULE.0vvvtrreeeininnnnnnnnn. 38
D. THEPREDICTMODULEttiiiiiiineneeennennnnneannn. 40
E. LINEREPLACEMENTMODULE.c0iiitiiinerennnnnnnn 42

vii

IV. IMPLEMENTATION OFPRCMODULES..................... e 45

A. PROCEDURE 45

B. IMPLEMENTATIONot 45

1. TheSnoopModule........... i, 47

2. TheHitDetectionModuleoovueuiinnnenn .. 49

a. ThehitmodModule 0. 49

b. TheencoderModulec00o oo, ... 51

3. ThePredictModule. . ..o 53

4. The LineReplacingModule............................... 54

Vo SIMULATIONS. . e e e 57
AL GENERAL. ... 57

B. THESNOOPMODULE0ouuii i 58

C. THEHITDETECTIONMODULE.ooueii 58

D. THEPREDICTMODULEcouuuiini . 59

E. THELINEREPLACINGMODULE.oouu 60

VL. CONCLUSIONS AND RECOMMENDATIONS.o 62
A, CONCLUSIONS . .o 62

B. RECOMMENDATIONS e 62
APPENDIX A. SCHEMATIC SHEETS oiteen e 63
APPENDIX B. VERILOG-INFILESttt 73
APPENDIX C. VERILOG TESTSHELL FILES.covve .. 109
APPENDIX D. RPB PIN-OUT DIAGRAMS. ...t ooe oo 133
APPENDIX E. EPOCH’S COMMANDS . ..ottt 137
LIST OF REFERENCESoooot e 139
INITIAL DISTRIBUTION LIST . . . oo oot e e e e 141

viii

1: Latchup Test Results

LIST OF TABLES

...

2: Specified Parameters for Module Generation,
3: Truth Table foran 8-bitEncoder i,

ix

LIST OF FIGURES

1: The Displacement-Based Algorithm................ e 2

2: Predictive EQUAtiON . . .o o vttt i i e i e i e 3

3: RPB and PRC System Location After Ref. [2] oL, 4

4: Implementation of The Algorithmin the RPB. AfterRef [1] 8

5: Basic RPB Algorithm Flow Chart. FromRef [1] 9

6: Finite State Machine Flow Chart. FromRef[1] 10

7: TestBench Block Diagram i, 11

8: Pattern Generator Main Program Listing i, 13

9: Pattern Generator Macro Listing ittt 14
10: RPB Block Diagram. FromRef {1] o i, 15
11: Chip Response to Clock signals i, 16
12: Chip Response to the Generated Patterno, 17
13: Section 1, Captured Waveform i i, 18
14: Section 1, Tested Areasof DataPath 19
15: Section 1, Tested Areas of The FSMo i i i e 20
16: Section 2, Captured Waveformttt ittt 21
17: Section 2, Tested Areasof DataPath 23
18: Section 2, Tested Areas of The FSM . .. oo vttt it e i e eeannns 24
19: Section 3, Captured Waveformt iieinennnn.. 25
20: Section 3, Tested Areasof DataPatho, 27
21: Section 3, Tested Areas of The FSM it it i 28
22: Section 4, Captured Waveform e 29
23: Section 5 Captured Waveformot 30
24: Measured Voltage Thresholds i i, 32
25: PRC Functional Block Diagram. AfterRef. [2] 34
26: Snoop Module Functional Block Diagramo, 36
27: Hit Detection Module Functional Block Diagram 38
28: Predict Module Functional Block Diagram 40
29: Line Replacement Module Functional Block Diagram 42
30: Intermodule CommunICationititintenenneneoneneenennonannens 44
31: State Diagram for the Snoop Module FSM 47
32: Legend for State Diagramsttt i i 48
33: Single Prediction Line Circuit Diagramc0iiiiininnnnen... 50
34: State Diagram for the Predict Module FSMcciiiiin.n. 53
35: Data Path of the Line ReplacingModule i, 55
36: State Diagram for the Line Replace Module FSM 56

xi

I. INTRODUCTION

A. THEORY OF OPERATION

The Read Prediction Buffer integrated circuit (IC) was designed and implemented by
Gary J. Nowicki as part of his thesis work in 1992 [Ref. 1]. The RPB is basically a buffer,
attached to individual memory modules, that stores one word of data corresponding to a
predicted memory address. When a read miss occurs in the on-chip data cache, the RPB IC
compares the miss address to the predicted one. If both addresses are equal, the buffer
transfers its pre-fetched data to the on-chip data cache, reducing the apparent latency of the
main memory access. Otherwise, it allows the read operation to proceed normally. If a write
access occurs, the RPB performs, when necessary, a write through operation to maintain
data coherency.

The chip utilizes a displacement-based prediction algorithm in an attempt to predict
the next data cache read miss address. The algorithm is simple enough to be implemented
inexpensively in dedicated hardware and it has proved to be amazingly successful for
programs with strong spatial and temporal locality[Ref. 2]. Figure 1 describes this
algorithm in detail. When an address arrives, its value is compared to the prcdicted one .
This operation determines whether the address conforms or not. Conforming means the
triggering of a pre—determinedv sequence of operations that allows the completion of some
action previously started based on the predicted value. Regardless of the boolean outcome,
the algorithm proceeds to calculate the next predicted value. This is done by extracting the
offset between the current address and the previous address and then adding that offset to
the current address. To clarify this, the equation and associated simplification is presented
in Figure 2. In the Read Prediction Buffer chip, conforming is the transfer of the pre-fetched
data to the on-chip data cache and the action based on prediction is the fetch of data stored

in memory at the predicted address.

predicted =addres

Predicted:= 2*address - previous;
previous:= address;

Initial condition:
Predicted:= previous:= nill

Figure 1: The Displacement-Based Algorithm

OFFSET = C, - P,

Predicted = Cp + OFFSET

|3. Predicted = C5 +(Ca - Pn)

4. Predicted =2*Cp - Py

Figure 2: Predictive Equation

B. ENHANCEMENTS

As explained in the previous section, the RPB was conceived to improve memory
performance. However, a closer analysis of its architecture indicates two major drawbacks:

+ System Performance Degradation: The buffer provides an additional level of
latency to the memory structure when a predicted address is in error.

» Branch Sensitive: Every time there is a displacement change (which occurs at
branches) the predicted address will be in error.

The solution to these problems forced considerable changes in the architecture of the
buffer. In fact, its placement in the memory hierarchy has completely changed. This new
design has given birth to the “Predictive Read Cache” chip which could become an
alternative to on-chip second level cache memories [Ref. 2].

In the PRC, the first problem was eliminated by reallocating the chip. It now conforms
to a different system configuration as shown in Figure 3. The chip no longer forms part of
the main-memory module. Instead, it acts as a stand-alone device that snoops read/write

operations between the on-chip data cache and main-memory. This way, the device won’t

Main-Memory Main-Memory l

Figure 3: RPB and PRC System Location

interfere with the read operation if it does not correctly predict the read miss address.
Otherwise, it stops the read operation and provides its pre-fetched data to the data cache.
This process cuts the normal read time almost in half .

This new configuration requires an interface with appropriate handshake signals to
interact with the cpu and main memory modules. The interface chosen was that of the
Motorola-IBM Power PC603 chip.

The second problem was eliminated by increasing the number of predictive lines from
1 to 128. This means that the chip is now able to track 128 different displacements. This

arrangement not only decreases the branch sensitivity but also increases the probability of

a hit.

C. RESEARCH GOALS
It is the goal of this Thesis to fully document the RPB testing and find out the
following:

+ Does the chip work at all?

« Does it correctly implement the intended algorithm?
+ What is the minimum and maximum failure rate?

» What sections of the chip do or do not work?

+ Is there a latchup problem?

e What kind of noise margins does it have?

+ What is the power consumption?

The motivation for such testing is that the RPB is the first IC designed and
implemented at the Naval Postgraduate that actually has over 10,000 transistor in it
(Previous projects were of smaller complexity). Therefore, it is of significant importance
to the NPS VLSI instructors to fully test the chip in order to evaluate the used CAD tools,
taught techniques, and available library. Furthermore, the process of testing an IC with a
nontrivial algorithm is not well explored in the literature. This work may serve as an
example and could be used as a guide to future IC testing.

An additional goal is to proceed with the design and implementation of the PRC. The
complexity of the PRC far exceeds that of the RPB and its completion may not be possible
as part of this work. However, whatever advances are made, they will be of great

significance to future researches.

D. REQUIRED EQUIPMENT AND CAD TOOLS

The main equipment utilized for the testing of the RPB chip was the Naval
Postgraduate School’s HP16500B Logic Analysis System. The design and layout of the
PRC was done on the NPS’ Sun SPARCstations utilizing Mentor Graphics’ Design
Architect, Cadence’s Verilog-XL and Cascade’s Epoch 3.1.

1. Hewlett-Packard Logic Analysis System

The HP16500B is the mainframe of the Hewlett-Packard Logic Analysis
System. It uses the Motorola 68EC030 microprocessor and is equipped with an 85 Mbyte
DOS-formatted high-reliability hard drive and a single 3.5-inch 1.44 floppy disk drive.The
system offers a modular structure for plug-in cards [Ref. 3]. There are many test and
measurement modules available that fit into the mainframe. The following briefly describes

the add-on modules acquired by the Naval Postgraduate School.

a. Acquisition Board

The NPS purchased one HP16550A 100-Mhz State/ 500 Mhz Timing
Logic Analyzer board. The module has 96 data channels and six clock/data channels.
Captured data can be display as data listings or waveforms, and can be plotted on a chart

or compared to a reference image.[Ref. 4]

b. Stimulus Boards
The NPS also purchased one HP16520A Pattern Generator Master Card
and two HP16521A Pattern Generator Extension Cards. The PGM is a general purpose
digital stimulus. The master card offers the minimum configuration of 12 data and 3 strobe
channels, a clock out channel, and three dedicated input qualifier channels. Each expansion
card offers expandability with 48 additional data out channels (up to four expansion cards
can be connected to a single master card). The module exhibits a 4 K bit per channel

memory depth, TTL and ECL interface levels, intermodule triggering, and clock rates

between 5 Khz and 50 Mhz.[Ref. 5]

2. Sun SPARCstations
The SPARCstation 10is a uniprocessor desktop computer, manufactured by Sun
Microsystems Computer Corporation. The workstation utilizes the SuperSPARC
microprocessor which can execute three instructions concurrently, enabling superior

integer and floating point performance for complex computation. The Naval Postgraduate

School has a variety of models configured differently, but in general with a 64 MB of RAM
memory and two 424MB internal hard drive, which are mainly used for swap space since

the system mounts several large files systems from remote servers.[Ref. 6]

3. Mentor Graphics’ Design Architect
Design Architect is a multi-level design environment in which top-down designs
are captured at the architectural, logic and circuit levels. The environment includes editors
for Schematic, Symbols, Logical Cable, and VHDL designs. Compiler for VHDL also
included.[Ref. 7]

4. Cadence’s Verilog-XL

Verilog is a hardware descriptive language (HDL) and simulator specification

capable of describing circuitsétructurally, functionally or a combination of both.[Ref. §]

5. Cascade’s Epoch 3.1

“Epoch is a complete physical IC design system utilizing state-of-the-art double
and triple metal technology with finite state machine synthesis and automatic placement,
routing and buffer/power rail sizing. Epoch accepts input from Verilog, VHDL, Valid
GED™, Synopsys®, VIEWIlogic®, Mentor Graphics Design Architect®, Cadence
Composer™ and EDIF. It provides layout-based simulation output in Verilog, VHDL,
QuicksimII™ and EDIF formats and outputs geometry in GDSII and CIF fnask generator
formats.”[Ref. 9]

E. THESIS STRUCTURE

The implementation of the algorithm and the testing procedures for the Read
Predictive Buffer chip are discussed in Chapter II. Fundamental block designs of the
Predictive Read Cache are explained in Chapter III. Implementation details of different
PRC components are shown in Chapter IV. Simulation of different components are
presented in Chapter V. Chapter VI gives the thesis conclusions and further

recommendations.

II. TESTING OF THE READ PREDICTIVE BUFFER CHIP

A. IMPLEMENTATION OF THE ALGORITHM

The RPB makes use of a displacement-based algorithm which extracts the offset
between two consecutive read accesses and adds the offset to the most recent read access.
The implementation of the algorithm in the RPB, shown in Figure 4, is straight forward. It

utilizes two register files to hold the current and previous addresses, an adder and subtracter

to predict the next data read address?, and a comparator to perform the boolean operation

on the requested and predicted addresses.

Read Address

PAR o

Predicted Address
-

A+B

___»| CAR | | <

Ay
) g MATCH

CAR: Current Address Register
PAR: Previous Address Register

Figure 4: Implementation of The Algorithm in the RPB. After Ref [1]

The control sequence performed on the datapath of Figure 4 is explained in Figure 5.
Notice that this particular implementation does not compare values until the third Read
access occurs. Furthermore, it uses an extra register, namely the CAR, to hold the value of

the current read access. Figure 6 presents the finite state machine responsible for this

1. Notice from Figure 4, that RPB implements equation 3 on Figure 2.

1st Read Access

Load 1st. Read Address into CAR

2nd Read Access

Transfer CAR’s Address to PAR

Load 2nd Read address to CAR
Obtain OFFSET (subtract)

Get Predicted (add)

Use the Predicted address to fetch data

3rd Read Access

Compare 3rd Read Address to the
Predicted Address

NO MATCH

MATCH

Send Predicted Data to CPU

Figure 5: Basic RPB Algorithm Flow Chart. From Ref [1]

sequence. The machine generates the necessary internal signals to control the flow. In
addition, it sends and receives external signals to interact with the memory module. This
state diagram can easily be understood without going into details. The states on the right

hand side are used to count the number of read accesses received, and perform the

1.NDV
2.ROK
{RDWR+AV+NRE RDWR+AV+NRF
1.EMA
2.AMRD
3.CAR
MAC
1.OMRD
2.Dv
NAV
1.NDV
2.ROK
RDWR+AV+NRF
1.EMA
2.AMRD
3.PAR
4.CAR
MAC
1.OMRD
2.DV
3.SUB
4.ADD
NAV

1.EMA
2. AMPA
3.NDV

MAC
1.PDMR
2.PDR

1.ROK

01101 < !RDWR+AV+NRF

1. AMRD
1.EWR
LEWR 2.DMCP 2.coM
: 3.PDR 3.CaR
I
LDV 1.EMA LV
2.0MRD 3 MACE

NAV

Figure 6: Finite State Machine Flow Chart. From Ref [1]

prediction and comparison sequence presented in Figure 5. The states forming a loop on
the left side (1,2,5,6,7,12-17) are used to execute a write-through operation whenever a
write access is received. Verifying proper functionality of this state machine constitutes the
core of the testing. The following section describes the procedures and results for such

testing.

10

B. PROCEDURE

Testing was divided into two phases. The Visual and the Functional phase. In the
visual one, the magic files (layouts), extractions, and spice simulations were inspected. A
great deal of time was spent looking for obvious errors and design rule violations. Negative
results were obtained, therefore, no documentation is provided. For a review of related
information, the reader is referred to the original document prepared by Nowicki in 1992,
[Ref. 1].

In the functional phase, the chip was treated as a black box. Signals from the
HP16520A Pattern Generator were applied to the input and control pins of the chip. The
chip’s response was then captured and analyzed using the HP16550A State/Timing logic
analysis module. Acquisition of expected responses ensured the proper functionality of the
chip. The rest of this chapter is dedicated to presenting detailed information concerning the
setting of the test bench, generated stimulus, acquisition and analysis of responses, and

other tests performed.

1. Test Bench Setting
Figure 7 presents the basic idea of the test bench used. Boardl and Board3 are
located within the HP16500B Logic Analysis System. Board2 was designed and built to
hold the RPB chip. The board was constructed utilizing the information presented in

Appendix D.

Pattern Generator State Acquisition
Board1 Board3

Module under Test
Board2

101110 |
010100 |
000011 |
111000

‘_
H‘To TO

Figure 7: Test Bench Block Diagram

11

2. Generated Stimulus

The HP pattern generator module was programmed to generate test cases for the
finite state machine. Although an exhaustive set of cases could have been generated, the
process of analyzing every single response would have consumed an extraordinary amount
of time. Besides, the purpose was to find out functionality, not reliability. The idea then was
to create programs that would force the state machine to enter all of its states. One such
program is shown in Figure 8.

A detail explanation of what the program does is given in the next section where
analysis of the chip’s response is performed. For now, it suffices to say that the program
consist of a body plus the three macros shown in Figure 9. These macros constitute the |
basic building blocks. The first macro, named write, enables the proper external signals in
order to simulate a write access. Likewise, the read macro (second one) simulates a read
access. Notice the only difference between these two macros is the level of the RDWR signal
and the channel in which data is sent. Read data is sent through channel H to simulate
memory fetching. On the other hand, write data is sent through channel G to simulate cpu

writes. The last macro, MAC, enables the MAC signal.

3. Data Acquisition and Analysis
This section explains in detail the generated stimulus and the chip’s response to
those stimulus. Furthermore, it points out the different sections of the state machine and
datapath involved in that response. Figure 10 presents the chip’s block diagram which
identifies the I/O signals, internal signals, and the main components of the chip. This
diagram, along with the state machine diagram previously presented, will be used to trace

the working sections of the chip.

12

PATTERN GENERATOR PROGRAM LISTING

Instr

00 SIGNAL IMB
01

02 WRITE

03 PARAMETERS
07 REPEAT 2

08 READ

09 PARAMETERS
13 REPEAT 2

14 WRITE

15 PARAMETERS
19 REPEAT 2
20READ

21 PARAMETERS
25 MAC

26 PARAMETERS
29 WRITE

30 PARAMETERS
34 REPEAT 2
35READ

36 PARAMETERS
40 MAC

41 PARAMETERS
44 REPEAT 2

45 READ

46 PARAMETERS
S0 MAC

51 PARAMETERS
54 REPEAT 2

55 WRITE

56 PARAMETERS
60 REPEAT 2

61 WRITE

62 PARAMETERS
66 REPEAT 2

67 READ

68 PARAMETERS
72 REPEAT 2

ADDR NAV AV NRF MAC RDWR H G CLKA CLKB
HEX BIN BIN BIN BIN BIN HEX HEX BIN BIN
0000000 1 0 ©0 0 0 000 000 1 1
0000000 1 0 0 0 0 000 000 1 1
000001 (13 (13 (13 (13 (13 1131333 001 1 1
0000000 I 0 ©0 0 0 000 000 1 1
000001 (13 (13 (13 [43 001 46466 1 l
0000000 1 0 ©0 0 0 000 000 1 1
000006 (13 (13 13 (13 6 113113 006 1 1
0000000 1 0 ©0 0 0 000 000 1 1
000002 (13 (13 (13 13 13 002 113313 1 1
000003 (13 (13 (13 (13 (13 1133433 OOF 1 1
000000 1 0 O 0 0 000 000 1 1
000003 3 (13 (13 (13 (1% 003 (3 1 1
(13 13 (13 (13 (13 1121513 (111133 1
0000000 1 0 O 0 0 000 000 1 1
OOOOOS (13 (13 (13 (13 (13 005 (121313 l 1
(13 (13 (13 (13 (13 (111123 (3313313 1 1
000000 1 0 0 0 0 000 000 . 1 1
000006 ¢t w006 11
0000000 1 0 0 0 0 000 000 1 1
000007 [13 (13 13 13 £33 11711113 007 1 1
0000000 1 0 0 0 0 000 000 1 1
000007 13 (13 (13 13 (13 001 “““‘ 1 1
0000000 1 0 0 0 0 000 000 1 1

Figure 8: Pattern Generator Main Program Listing

13

PATTERN GENERATOR MACRO LISTING

Instr ADDR NAV AV NRF MAC RDWR H G CLKA CLKB
HEX BIN BIN BIN BIN BIN HEX HEX BIN BIN

00 WRITE ADDRS P1 Pl P1 P1 P1 Pl GDATA CKA CKB
01 PARAMETERS P2 P2 P2 P2 P2 P2 P2 P2 P2 P2
03 REPEAT 2 ADDRS 1 0 0 0 0 “«“ GDATA CKA CKB
04 ADDRS 1 0 0 1 0 “« GDATA CKA CKB
05 WAIT 1XX ADDRS 0 0 0 0 0 “« GDATA CKA CKB
06 ADDRS 1 0 0 0 0 CKA CKB
END OF MACRO
00 READ ADDRS PI P1 PlI Pl Pl HDATAPI CKA CKB
01 PARAMETERS P2 P2 P2 P2 P2 P2 P2 P2 P2 P2
03 REPEAT 2 ADDRS 1 0 0 0 1 HDATA““ CKA CKB
04 ADDRS 1 0 0 1 1 HDATA““ CKA CKB
05 WAIT 1XX ADDRS 0 0 0 0 1 HDATA“““ CKA CKB
06 ADDRS 1 0 0 0 1 wae wwe OKA - CKB
END OF MACRO
00MAC ADDRS PI PI PI PI PI PI Pl CKA CKB
01 PARAMETERS P2 P2 P2 P2 P2 P2 P2 P2 P2 P2
02 REPEAT 2 OOOOOO l 0 0 O 0 P FTT1TT3 CKA CK_B
03 1131 1 O O 1 O (311113 (113113 CKA CKB
04 (311313 1 0 O O 0 L1331 [17313 CKA CKB
05 (1333313 1 0 0 0 O 133113 (31113 CKA CKB
END OF MACRO

Figure 9: Pattern Generator Macro Listing

14

Read Address Address Bus
From CPU
v v
CAR | : — _PAR —» i i
r— — ¥ urrent Address Register] r Previous Address Register
| St
I
r—— =] — = - — —
b
| jr———f———
subtracter,
Il
Loyt
| I | v
\'%
l l I l. ————— ADD Read or Write Address
| I adder
Iy Predicted Address
I | Ll NEG |
y y
: Ly N—4
—_—— — —CoMP_
I l I l r compamtor A 4 \ 4
| | | | address
I l l | | | MPXR Memory write
| il MT /NMT | F
l I A 4 Y
I | I I address data
I 111 Y1 Y I .
Lo . — — — AMRD/AMWR/AMPAI MAIN MEMORY Data line
FSHTAQITEIE —_— _I:]iiCP_LPDML - S Fomcru
L — — — —_—— — Read data
r— 4o MAC‘Im"E | _OMRD/OMPR
v =% !
| rox RDWR Y ¥V
——— —— _—— e — = — =) data
| EWR e s 3 ng/
| Nov NRF |
| MACE AV To Cach I X
l'—.- EM-A _N_A v o0 Lache R Ly Predicted data Register
1 CLKA/CLKB L

Figure 10: RPB Block Diagram. From Ref [1]

15

a. Overview

The very first step was to make sure that the chip’s state machine was in
fact in its initial state. That was accomplished by enabling only the clock signals. This is
clearly shown in Figure 11. After just one clock cycle the chip was ready for input. This is
indicated by the assertion of the NDV and ROK signals (state 0d). The clocks were left to run

free for an arbitrary period of time to make sure that the state was stable. At this point, the

Figure 11: Chip Response to Clock signals

pattern generated by the program was applied to the input signals of the chip. The logic
analyzer connected to the output signals of the RPB captured the response. This response
is shown is Figure 12. For convenience, the figure has been partitioned into 5 sections (the
division is marked by the vertical dash lines). Each section is explained and analyzed next
in order to verify that every state and every component responded correctly. Although not
numbered, the sections are taken sequentially from left to right. It is important to explain
the convention used in this figure and following ones. The output signals are displayed

above the clock line, and the inputs below it. All signals except for NAV are asserted high

16

f N D U x._-;:r.-‘,., T ’__‘ r_l m r:] ' % SRR RAes ocontsonconton n l rl_
: i i A A S

I e e a1

PR e e R

i = ' 1]

i T t T m [

1K 1=] T A ! -

1K 2 = a

1K 3 l I | I

;K a =

o I

JELks S | i T

1Y g I e B -

T e o e i i s o et

/}.v """"" .'f'~:'::' ''''' R PR o .! R R AR aieLvielalnlele n s e e e e e !' P RN 00 V,I AP e N A P AN AR vwa&:.;x;v;‘;”, """ ' 4,880 . S O ORIDOOOPCII00

and rising edge triggered. NAV is asserted low and trailing edge triggered. For the following
figures, the number below the asserted pulse refers to the state in which that signal (and
vertical ones) are asserted. The lines with arrows, indicate the inputs that force a change of
state. The signal’s name written below the asserted pulse is the internal signal that enables
that external signal to appear. Last, the F signal is a 22-bit signal, and the X signal is an 8
bit signal. Only the first 4 bits of each signal are displayed since the testing numbers are

kept small.

b. Sectionl

At line 00, the program sends an internal signal to synchronize the pattern
generator with the timing analyzer module. Next, it simulates a write access followed by a
read access (line 02 through 13). Both accesses are done to location 000001H. The written
value is unimportant at this point, and the read value was chosen to be 001H. This
completes the stimulus for this stage. Figure 13 presents the captured waveform for this
section. Initially, the chip is in state O and asserts the NDV and ROK signals, indicating that

it is ready for input. The RPB detects a write access whenever the RDWR signal is negated

17

R T R R A A R o A b S NN O T AR N i

WDV y
2 / 3
= T
j'uR] I \ L | K Lf
MACE ‘K\ 2 : 4 ' .
F L [| &
= N ~5 AMRD X —
2 T X
47 X X) N]
13 27 .Y X
0|3 X X
. | \ \ 2 OMRD :
: =X X X X
G X X N ;
,] 7 '

DIDA=<COrr—
=RAS
001D
=i
N\
- -
|~
\ ™
N |
% ‘ ARRRRANAR SOLAON PR Sl N O

Figure 13: Section 1, Captured Waveform

and both AV and NRF are asserted (a read access is when all three si gnals are asserted). When
the first write occurs, the machine enters state 1, asserting EMA, EWR, and AMWR. This last
signal is internal and can not be seen. However, it controls the address multiplexor output
(F signal). Since the value of the F signai is 000001H (upper bits not displayed) and is the
same as the intended address, one can infer two things. First, the AMWR signal was correctly
asserted. Second, the multiplexor module works correctly. To finish the write cycle, the
input of the MAC signal forces a change from state 1 to state 2. The chip correctly asserts
DV. Then, a NAV signal resets the machine to state 0.

The trailing read access works in a similar fashion. The machine enters
state 3 upon detection of the read access. However, this time it does not enable the EWR or
the AMWR signal. Instead, it asserts the AMRD and CAR signals (besides EMA). AMRD also
controls the address multiplexor output and can be verified by observing the value of F
(remember that the read address is also 000001H). On the other hand, CAR can neither be
seen nor deduced at this point. But, a correct assertion of CAR would have stored the address

000001H in the current address register (to be kept in mind for later on). To continue with

18

the read process, a MAC is issued changing the machine from state 3 to state 4. Here, DV and
OMRD are asserted. Again, DV is external and can be seen, OMRD can not. Nevertheless,
OMRD controls the data multiplexor output and can be verified with the value of the K
signal. The read value is 001H, which is exactly what the K value is. Finally, NAV is issued
and the states changes from 4 to 5. Notice that state 5 is sirhilar to the initial state 0. This

completes this stage analysis. Figure 14 and 15 summarizes the areas tested so far.

Read Address Address Bus
‘ From CPU
Y. ’é’
CAR . PAR . .
o Current Address Register [3 Previous Address Register
FoomcoovecslNNNINIINE S |
R P 4
o v &
oy o - SIB f
i { \subtmcter{/
oot
i { o %
H kY
: ¥
i f o T e e ADD 'ég /[Read or Write Address
: § H adder y
i . \ Predicted Address
1, NEG
frd T v Tested
| ; . G T o0 Not tested
i : Mo 2
HEN mn e e e COMEL,
{ { i F { comparator kA A
} i i ‘\ address
i . f : E Sor— - MPXR Memory write
by (i1 MT /NMT T l F
; : H [Y Y
R I address data
b ,
TR S—— - — — — AMRDIAMWR/AMPA MAIN MEMORY Data line
STATE - - - DMCRLPOMR— o S| Fromcru
 acma [PR e Read dts
r =" e — — DLOMER
1
DV
| oy teg
[rok RDWR = % v 9
EWR ™ data
| EW _Mac . \ MPXR
| NDV NRF {
| MACE AV { X,
S —— To Cach . .
l EMA NAV o fache L‘g,; Predicted data Register
v g Clkascks 0 ON) b

Figure 14: Section 1, Tested Areas of Data Path

19

00000,

IRDWR+AV+NRF

L NDV
2. ROK

RDWR+AV+NRF

1.EMA
2. AMRD
3. CAR — — Tested
MAC wevenonoee NOE tested
\ 1. OMRD
2.DV
NAV
1.NDV
2.ROK
!RDWR&AVd-NRFf \-\\ RDWR+AV+NRF
1.EMA (’ \%
1.EMA
2. AMWR @0 7
2. AMRD
3. EWR i ’\ X
4.CAR
MAC MAC
™
1.DV , 1.OMRD
oomj,- 0100/} 2DV
3.SUB
i AV 4.ADD
omw LEMA
E 3.NDV
MAC
£\ 1. PDMR
01011} 5 ppR
1.COM
2AMWR 1.ROK
3EMA 2N
{01101 34 'ROWR+AVNRF {01100}
M 1N RDWR+AV+NRF
A MT e
iy BN 1 AMRD
1.EWR 10010}
P 1 2.DMCP / 2CoM
1.LEWR o 110 01”9 2DMC " 3.CAR
\ - - 4. PAR
NMT, MT
MAC'\ /
{10000} 1.DV 10011 {1010} 1 VR
- .ﬂ }J 3. MACE
NAV “ o
~ MA}\' / MAC
100:)1\3 1.NDV %:)1;;% 1.SUB
E,J 2.ADD
“se” 3.DV
L4 NAY,

Figure 15: Section 1, Tested Areas of The FSM

20

c. Section2
The portion of the program corresponding to this section is given by lines
14 through 28. Again, a write followed by a read access is simulated. This time, the value
to be written is 006H at address location 000006H. The read access requests data from
location 000002H. The value assigned to that memory address is 002H. Both address and
value need not be the same. In fact, they are rarelyvthc same. Without loss of generality, this
keeps things simple. The captured waveform for this section is presented in Figure 16. As

in state O, state 5 asserts NDV and ROK to signal that it is ready for input. The write cycle is

K _+M 5

% %”g 6 // = 8 ld\

. v r=&7%

e : X ™9\ _——x
[AWAN AMRD AMPA |
X { -

i ! -AMWR —<—X o AN, X
IF A <X — \
i X —— | — X
; : \ — i on

. 3 X AN N —

performed exactly the way it was explained in the previous section. The only difference is
that state 6 and 7 replaces states 1 and 2. The value of F is proof of the correctness of the
signals involved. The read cycle is executed a little differently and is explained in the next.

When the second read access occurs, the state changes from 5 to 8. In this

state, EMA, AMRD, CAR and PAR are asserted. The first two have already been checked and

21

can be verified in the same way. CAR and PAR are internal and can not be checked in this
state. Remember, in the previous section it was assumed that CAR was correctly asserted.
The same assumption will be made here. Then, the previous address register would hold
the first read address and the current register the second one. With this, the chip has enough
information stored to make its first prediction. A MAC signal comes along and the chip
enters state 9. In this state, DV and OMRD are asserted, as well as SUB and ADD. OMRD is
again verified with the K value. This time, its value is 002H, which is also correct. The other
two internal signals, SUB and ADD, are the commands for calculating a predicted value. At
this point, if everything has gone well, a predicted value of 000003H should exist and a read
access to that location should be generated by the chip. When the state changes to state 10
(by the NAV signal), the read.access is initiated by asserting EMA and NDV. Also, a new
unchecked internal signal is asserted, AMPA. This signal selects the other input of the
address multiplexor (predicted value). The F signal now reflects that value, 000003H. The
correctness of this value implies the correct functioning of the Current and Previous
register, the adder and subtracter, and all the signals that have been assumed so far. When
data at the requested location is ready, the MAC signal is asserted, forcing a change to state
11. PDMR and PDR are asserted to latch the read value into the Predicted data register. The
read value is 003H, but it will change when a write through operation is executed. For now,
these two signals can not be checked. Without the need of any input, the state changes to
state 12, which is like states 0 and 5. Notice that ROK is the only signal asserted since NDV
was asserted in state 10 and negated in statel1. This is a clear landmark that state 12 has
been reached. This completes the analysis for this section, as shown by Figure 17 and

Figure 18.

22

Read Address Address Bus
From CPU
v L 4
car [dd | S 4L N ek
r——- > urrent Address Registbr :‘ Previous Address Registe
e ————
| J
b
| jr———t———w
subtract
I
| I I
| I I v 4
\'4
l I I r _____ ADD Read or Write Address
I l adder
| l I I Predicted Address
NEG
| | | \" 7 Tested
| | e Not tested
l I I mn
I ! l] L comparator § A 4 h 4
| | | i address
| I | | { A "/ r— - MPXR Memory write
I MT /NMT I F
| pl i | v 4
| l I i address data
|
{ LLL.E LY
TS p— - — — —AMRD/AMWR/AMP3 MAIN MEMORY Data line
e waee wane DMCRLPDMR... . G
STATE = From CPU
e o POR ~ Read data
r—-o MACGERE L __ __ _OMBDIOMER | *
1
| pv H
A ¥ I
| Rrok RDWR I ! kS, 4
| owm MAC IR ltiutinl i N 4
- —— —— : Nasrsnnoganand’
| NDV NRF L
LW e e — w
rAErv;:x __N-A v 0 Lache 3¢ Predicted data Register
| CLKA/CLKB E §

Figure 17: Section 2, Tested Areas of Data Path

23

| AMW
2. AMWR 2. AMRD
3.CAR

MAC U

1. OMRD
2.DV

NAV

Tested
Not tested

1L.NDV
2.ROK
RDWR+AV+NRP
1.EMA
2. AMWR 1. EMA
3 EWR - AMRD
4 CAR
MAC
1. OMRD
2.DV
3.SUB
4. ADD
NAY
1L.EMA
2. AMPA
3.NDV
MAC
1. PDMR
2.PDR
1.COM
% AMWR — 1. ROK
fOl 1 Ol}::é !RDWR+AV+NRF 01100
iU GG oy
; ; 1.EWR 10010} g'égMRD
l.EWR.QIHB) {1119 2DMcP e’ 3 CAR
- - : s
% — wr & PAR
MAO MAC f
3 o N LDV
{10000} 1.DV ;ﬁ.ng (\130113 flOW':}- 2.OMPR
- - 3.MACE
x Y -
-~ MAR' / MAC
100?)?3 1.NDV ﬁ"m;;& 1.5UB
\V) 2. ADD
. 3.DV
¥ NAY

Figure 18: Section 2, Tested Areas of The FSM

24

d. Section3
At the program level, lines 29 through 44 simulate another write followed
by a read. Address 000003H is accessed and written, the value is OOFH. Later, the read
access requests data at the same location. Remember from the previous section that the
predicted address 000003H exists and that data at that memory location has (hopefully)
been latched in the predicted data register. Figure 19 presents the corresponding waveform

diagram. When the write access occurs, the state changes from 12 to 13. There, a memory

00 SOCPOEE 4L T)

AMWR AMR.

DN —= O DA AANNY —= >

RS

0

DDATO
<M

i = DAOOONRARARAA T SOMMo=) |

Figure 19: Section 3, Captured Waveform

access is enabled with the assertion of EMA and the address is selected with the AMWR signal.
This time, a compare command is given (COM) because the buffer needs to maintain
coherency in its data. In fact, the requested address matches the predicted one. At this point,
either state 14 or 15 could be entered, depending on the output of the comparator. These
two states happened to have the same external signals but different internal ones. State 15
has DMCP and PDR, used to replace the stored value. For this particular case, state 15 should

have been entered and the stored value replaced with 00FH. The only way to determine

25

correct operation is to let the write cycle finish and make a read access to address 000003H.
This written value should be provided by the chip. This is exactly what follows. The write
access finishes in the same manner as was explained, cycling through states 16,17, and back
to state 12. When the read access arrives, the state moves to 18. AMRD is asserted (the read
address is reflected in the value of the F signal) and a compare command is given. The
transfer among registers is also performed. The assertion of DV and the value of X indicates
that the comparator successfully found a match and state 20 was entered. Moreover, the
write through operation also worked (the K value is 00FH vice 003H). Here, the MACE
signal is asserted for the first time. Notice that this is the only state in which that signal is
asserted (another clear landmark). The read cycle proceeds in the same way explained in
section 2; state 21 calculates the new predicted value (000004H) and then states 10,11, and
12 initiates and completes a read access for that address (see the value of F in state 10).
Figure 20 and 21 shows the sections tested in this analysis. With the exception of the NEG
signal, the data path has been completely checked and found to be fully working. These

findings are reinforced in section 4 and section 3.

e. Sectiond

This section was programmed to test the two missing states, 14 and 19. The
program lines 45 through 60 simulate a read followed by a write. The read access is to
address 000005H which holds the value 005H. The write is done to address 000006H. The
current predicted value is 000004H, so when the read access arrives a no match should
occur and state 19 should be entered. Figure 22 presents the corresponding waveform
diagram. Notice that EMA is asserted and not DV or MACE. This is a clear indication that state
19 was entered and that the comparator correctly performed its function. The rest of the
cycle continues the same way it was explained in the previous section. This time though,
the predicted value should be 000007H. The reader is reminded that the last two
consecutive read accesses have been 000003H and 000005H, which have a displacement

of two. Adding this to the most recent address gives 000007H. This result shows up when

26

Read Address

Address Bus

Current A

v

Previous Address Registel

ddress Registpr r—— =

— 11 '
______ d
L — — - SLB

subtract:
A 4 \ 4
—ADD Read or Write Address
adder

From CPU

Predicted Address

A

MT/NMT

i CLKA/CLKB

¥1.YX.
L 4 rFNmTE
STATE
r — 40 MACHINE
| oy tg
| Rox _RDwE
] EWR MAC
| NDV " NRF
| MACE “av
| EMA TNAv
v

R 4)] : S

-
—OMBRLOMPR. |

— AMRD/AMWR./ AMP3
— DMCPR/POMR., ... -

A

Tested
Not tested

F

y

address

MAIN MEMORY

Read data

=

— - 4
I
|

~

A 4
address
| MPXR Memory write

Data line
From CPU

A 4

e/

MPXR

o)

Predicted data Register

LT

Figure 20: Section 3, Tested Areas of Data Path

27

1L.NDV
00} 2. ROK
IRDWR+AV+NRE RDWR+AV4NRE
LEMA 1. EMA
2. AMWR
3 EWR 2. AMRD
’ 3.CAR
g — Tested
MAC e NOt tested
LDV 1. OMRD
2.DV
NAV
RDWR+AV+NRF
1. EMA
2. AMRD
3.PAR
4.CAR
MAC
1. OMRD
2.DV
3.SUB
4.ADD
NAV
1. EMA
2. AMPA
3.NDV
MAC
1. PDMR
2.PDR
1. COM
2. AMWR
3. EMA

!{RDWR+AV+NRF

01101 g
), o

NM
e

1. AMRD
4 2DMCP 2 Cou
1. EWR.{J}]]E} 3 PDR 3. CAR
" 4.PAR
~
MARM -
T 1.DV
LDV 1LEMA {10011}
2. OMRD (_‘/ %ﬁ’j{g‘;
MA}\v
1L.NDV ' 1.SUB
2. ADD
3.DV
NAV

Figure 21: Section 3, Tested Areas of The FSM

28

the chip initiates a read cycle to that address (AMPA). State 14 is entered when the

incoming write accesses an address other that the predicted one. The visible output of state

14 is the same as that of state 15. Here, the testing relies on the correct functioning of the

comparator.

0
|
2
3
4
0
|
2
3
4

. Section§

This section is basically a repetition of section 3 to confirm correct
operation of the adder, subtracter and comparator. The last lines of the program simulate,
once more, a write followed by a read (both to address 000007H). The captured waveform
is shown in Figure 23. The write access changes the value stored in the predicted data
register. The value written is 007H and is shown as the K value when the read occurs.
Again, notice the landmarks, MACE is asserted in state 20 and DV is very wide since it
asserted in both state 20 and 21. Furthermore, the predicted value is now 000009H since
the displacement is still two. A last thing worth mentioning is that the end of the waveform

does not terminate in state 12. As a matter of fact, states 11 and 12 were not executed this

29

time because the program failed to provide the last MAC signal. This completes the

functional testing of the chip. Other tests of interest were also performed and are explained

next.
; '\JDV T T T T 17 T T T T T j
1EMA [[3
s ﬂ G 10
HACE" |7 AN T 4 —|
r [AN ' |
F (IJI N\ 7 18 \ \ |
F =i Y w— — 5
F AN N X S AMPA |
K 9= \N— X
K i \\ \\ \\ Y |
g S 7) < OMPR |
K 4 \ [N |
ICLKA
ot
. %4 ?
gﬁgr — =1 — 7 1
A MAC £ —
SNAY _F

Figure 23: Section 5 Captured Waveform

4. Other Tests

Other tests were performed in order to find out different parameters of interest.

The following sections list these parameters and presents obtained results.

a. Failing Rate
The clock signal for the finite state machine isrprovided by signals CLKA
and CLKB. Both signals are a vector of inputs in which a logic “1” is maintained for two
clock periods and logic “0” is maintained for four clock periods. CLKB lags CLKA by three
clock pulses. Appearing as this:
CLKA 110000
cLke 000110

30

The machine was tested at various clock rates. It was found that the chip
best worked at a clock rate of 2 MHz (a period of 500 ns) with a power supply of 5.0 volts.
The maximum failing rate detected was at 5 MHz with 3.0 volts input and at 10 MHz with
5.0 volts.

b. Latchup

Before the chip was functionally tested, this test was performed. The aim
was to verify that the chip did not suffered from the parasitic effect of latchup. The result
was, in fact, negative. The procedure used was simple, an ammeter was connected in series
with the voltage supply. The voltage was then raised in increments of 0.5 volts and the
drawn current was recorded. Table 1 presents this results. The obtained values are clear
enough and need not be plotted. If there had been a latch up problem, the current would

have increased considerably around 4.5 volts.

Table 1: Latchup Test Results

Voltage HLAmMp
0.5 ' 0.00
1.0 0.00
1.5 0.01
2.0 0.02
25 0.03
3.0 0.04
35 0.06
4.0 0.09
4.5 0.12
5.0 0.15

31

c¢. Noise Margins

The HP10348A 8-Channel CMOS Tri-State Buffer Pod was used to buffer
the TTL outputs of the HP16520A Pattern Generator, providing CMOS level input to the
control pins of the RPB chip. The noise margins were found experimentally by measuring
with an oscilloscope, the voltage threshold of the outputs of the RPB. The thresholds for
the Buffer Pod were obtained from its reference manual. Figure 24 depicts graphically the

results obtained. With these values, the calculated margins were; NML= 0.3v, NMH=1.8v.

VOHmir i
VIHmin
VOme
VILmax
Input Output
Logical High Range ViHmin =2.4v
. IL: =05
Logical Low Range V0:£;= 41:
[] Indeterminate Region OLmax=08v

Figure 24: Measured Voltage Thresholds

d. Power Dissipation

The Chip’s power consumption was calculated to be 45 mW at normal
operation of 5 v and 2 Mhz. The drawn current measured was 9 mA. However, this
measurement does not reflect the worst case dissipation which occurs whenever three

“ones” are being added in one cell.

32

III. FUNDAMENTAL BLOCK DESIGNS OF THE PRC

A. SYSTEM OVERVIEW

It was mentioned in Chapter I that the sole goal of the redesign process was to grant
snooping capability and to give the ability to track multiple address traces to the Prediction
Buffer IC. Figure 25 shows this idea in a simplified form. From the global perspective, each
line of the PRC operates similarly to the RPB. A line is selected to generate a predicted
address for a particular displacement. When a read miss address is received, the address is
compared against all the predicted addresses. The comparison is performed in parallel by |
all lines. The line with a “match” becomes active and passes its stored data to the interface
unit which is in charge of performing address snooping and data transfer. A “no match” is
an indication of a displacement change and a new line is selected to be the active one.
Associated with line selection is line replacement. When all lines are full (contain predicted
addresses) and a new predicted address is generated, one of the lines needs to be replaced.
Most of the suitable known replacing algorithms are expensive and complex to implement
in hardware. Because of that, The PRC implements a somewhat modified version of the
Second Chance algorithm which is reasonably effective and easy to implement [Ref. 11].
The algorithm is basically a FIFO List in which each member of the list hds an associated
flag. When a new member arrives, it is added to the tail of the list and the member at the
head is removed. If the flag of the removed member is set, the member is again added to
the tail and the new head member is removed. The process is repeated until a head with a
clear flag is found. The flag is always cleared when the member is added to the tail and it
is dynamically set when the member has recently been used.

As in the RPB IC, the PRC needs to maintain data coherency at all times and at all
lines. The chosen method disposes of the stored data if a match is found during a write
access. The reason behind this is that the interface unit was designed to interface with the

PowerPC-603 CPU which performs single beat or burst read/write data transfers. A single

33

CAR » PAR
J, AYB L Pre-fetch
A A-B Data
Linei 0 O Predicted EN
— < (oS Address A 4
AVYB
A+B
i i
§ §
f §
§ §
§ §
§ §
§ :
¢ ¢
; }
CAR
o J, Prle)-fetch
. ta
Line §127) & Predicted ? EN
< [Address
U " - [
EN if‘ \ % A-EN INTERFACE UNIT EN_/ E \ £-EN
¥ Ay
&-mm}’ hand shake signals ._..,_...f
address bus I data bus

Figure 25: PRC Functional Block Diagram.

34

After Ref. [2]

beat is a noncacheable operation in which 1 through 8 bytes are transferred during an

access. A burst operation transfers 32-bytes and is cacheable (it actually fills a line of 32-

bytes in the on-chip data cache)!. The PRC is only concerned with burst operations,
therefore it stores 32-bytes of data for a predicted address aligned to a double-word
boundary (four bytes per word). A single beat read access can be ignore with no harm.
Ignoring a single beat write operation could cause data corruption. A process of updating
32-bytes at a time (a burst write) can easily be implemented. However, updating 1 through
8 bytes can be complicated and expensive since their addresses could be misaligned to the
double word boundary. The safest policy is then to flush the data if a hit occurs during a
single or burst read access.

Although the presented block diagram conveys the idea well, it is far from
representative of the actual architecture of the PRC. The diagram implies that many
modules (lines) perform the same set of functions. That is not optimal.To reduce cost and
complexity and increase efficiency, the architecture used implements functions for all
modules. An analysis of the required functionality dictates that the chip must be capable of
performing the following functions:

* Snooping,
» Predicting,
+ Line Replacing,
+ Storing and Detecting,
» Data Updating or Flushing
» Data Transfer and Flow Control
The structure of the architecture used is composed of six modules, each implementing

one of the listed functions. Four of these modules have been designed and implemented.
The following sections explain, at the block and functional level, these four modules. They
are first explained in isolation and then it is shown how they interact and communicate with

each other. Their implementation in hardware is given in the following chapter.

L. The transfer is performed in four cycles (beats) of 8 bytes (64 bits) each.

35

B. THE SNOOPING MODULE

This module was designed to snoop read/write operations between the IBM-Motorola
PowerPC-603 Central Processing Unit (CPU) and the Main Memory system. The module
main function is to identify a valid read or write access and provide appropriate
acknowledgment to the cpu if a read hit occurs. In addition, it alerts the other modules when
a valid access is detected. Figure 26 presents this unit. It is composed of an address parity
checker, a D-flip flop register with clear, and a finite state machine. The parity checker
checks the incoming address with the parity bits provided by the cpu. A parity error signal
is sent to the finite state machine which inspects this signal only if a potential access is
detected. A potential access happens when the Transfer Start signal (T'S) is asserted by the

cpu. The FSM must qualify this assertion before granting valid status. A valid status is

A[31:0] o
d A[31]
A[30]
1[27:0] OR27:0] o hit module &
A[29 . D 0 hit module
25} 1271 Q Predict module >
AG1:0) =
PE = %
P[3:0]
> P(3:0) Al28] To transfer module >
A[27] »
Ll
hit From hit module
I next 4+ back < From Predict module
TS > I CAR
TT[4:0] € INIT |
L
G FSM match To Predict module o
i o nomatch :
= —>
IBST » Flush To Flush module
—— »
ARTRY. Abort To data transfer
>
AACK . | To data transfer
< Ll
Snoop Module
External to PRC Internal to PRC

Figure 26: Snoop Module Functional Block Diagram

36

obtained when no parity error exist and either a burst read access occurs or a write access
occurs (single beat or burst). If a parity error exists, the module aborts the operation and
snoops for the next potential access (the unit was not provided with a retry signal to avoid
all possible interference). Otherwise, the FSM latches the requested address into the D-
register (Current Address Register) which provides input to the hit detection module and
the predict module. Notice that only the first 27 bits, A(26:0), of the physical address are
latched. Bits A[29]-A[31] are fed to the FSM and bits A[27], A[28] provide additional
information meaningful only to the data transfer module. The added bit, I[27], acts as a flag
which differentiates between an existing and non-existing address (0 for existing, 1 for
nonexisting).The FSM determines whether the access is a read or write by decoding the five
bits of the Transfer Type signal (77) (The different types of operations are listed in table 9-
1 on pp. 9-11 of [Ref. 10]). In addition to this signal, for a burst read access, the three most
significant bits of the address need to be a logical zero, the Cache Inhibit signal (CT) must
be negated, and the Transfer Burst signal (TBST) must be asserted. If all these conditions
are met, the module inspects the Ait signal and alerts the predict module with a match or
nomatch signal. If a hit is found, the module also sends an acknowledgment signal (AACK)
to the CPU indicating the termination of the addressl transfer and to the memory system to
stop the current read access. The same signal alerts the transfer module for the initiation of
the data transfer. The module then waits for a next or back signal to reset to the snoop
position. While waiting, if the Address Retry signal (ARTRY) is asserted by the memory
system, the module raises an abort signal. This is done because the Retry Signal will also
be received by the cpu which will abort the operation upon assertion. Similarly, for write
access, the module inspects the Ait signal and asserts the flush signal if a hit is found. The
FSM unconditionally resets to the snoop position. This completes the opération of the
snoop module. For detailed information concerning the 603 signal description or address

bus operattion, the reader is referred to chapters 9 and 10 of [Ref.10].

37

C. THE HIT DETECTION MODULE

This module was designed to hold all the predicted addresses and to simultaneously
compare all those addresses against the incoming requested addresses. In addition, the
module provides the line number at which a match is found. Figure 27 presents the block
diagram for this module. The unit utilizes a D-flip flop register and a comparator per line.
In each line, the register holds a predicted value for a particular displacement and the

comparator compares that value against the incoming request address. The requested

Requested addr | A[27:0] Line 0
> ine
Predicted addr A[27:0} A Apl OI0]
L 1D Q B
Y(127:0) L{0]
>
/
LoadLine [7:0]
» 1(7:0)
| | i |
Decoder | l I
[
I l I I
I I |
| Line 127
L A A=p| O[127]
D B]
Encoder L[127]
hit
< YO0
1(127:0x¢
Lnum [7:0]
< Y1(7:0)
Hit Detector Module

Figure 27: Hit Detection Module Functional Block Diagram

38

address changes every time the Current Address Register is loaded by the snoop module.
If both values are the same, the comparator asserts its single bit output (1 for equal, O for
not equal). The comparator recognizes an empty register or a existing non address using
the setting of the most significant bit (A[27]). A requested and a predicted address will
always have that bit set to zero. Therefore, if a register holds a non predicted address, the
MSB will be set to 1 and the comparator output will be zero for that line. A hit is detected
by the assertion of any of the comparator outputs. The line number at which a match is
found is computed from the position of the asserted line on the Out bus (O). A priority
encoder is used for this. A standard encoder will not be able to handle the special situation

in which two or more lines generate the same predicted address for two (or more) different

displacementsz. The priority encoder takes care of this case by selecting the line with the
highest priority and disregarding any other lines (lines with higher numbers have priority
over lower ones). As an alternative, the chip could have been designed to prevent such a
situation. However, the gains of doing so do not justify the increase in hardware cost.
Finally, a register is selected and loaded by specifying its line number with the Loadline
signal. A decoder component is used to decode the line number and assert the appropriate
register clock line. The Loadline signal is 8 bits wide, seven of which are use to decode 128
positions. The most significant bit (Loadline[7]) is used as an enable bit. When set to 0, the
output of the decoder is zero in all 128 lines. When set to 1, the decoder selects and asserts
one of its 128 outputs depending of the binary value of its lower 7 input bits. This concludes

the functioning of this section.

2. Consider the following example: Two consecutive read access arrive and are stored at line 1.
Suppose the first read is to address 001 and the second one is to address 004. This generates a pre-
dicted address of 007 (displacement is 003). Now a third read access occurs to address 005. Since it
is a no match, it is stored in a different line, say line number 2. When the fourth read access occurs
at address 006, a predicted address of 007 is also generated for line 2 (displacement is 001). If the
fifth read access is to 007, both lines 1 and 2 will find a match and both will assert its comparator
output. A normal encoder will fail under this situation.

39

D. THE PREDICT MODULE

The main module function is to generate a predicted address and to specify the time at
which a line is replaced. Figure 28 presents the functional block diagram for this unit. It
uses a register file to store the set of Previous Addresses, an adder to calculate a predicted
address, and a finite state machine to control the sequence of operations. The input to the
register file comes from the Current Address register. Notice that the flag bit A[27] has
been removed and is not passed into this module. The adder implements equation 3.1
(which is equation 4 of figure 2).

0 =2%B + (-o0) (Eq 3.1)

The multiplication term is obtained by adding a zero to the LSB of the B input. The
second term is obtained by providing the A input (register output) in 2’s complement form
(That is the reason for inverting the input of the register file and providing a carry in bit).

The 2°s complement is formed in the adder when it adds the inverted input with the carry

Physical A. A[26:0]
. MO 11111111 IE20
PA[26:0]
- a[27:0] I
1(26:0)
Y(26:0) a[27]
. O[27
Line[6:0] [_RA(ﬁ-O) (271
> WA(6:0) —
WE RE
paR 20D Pred|
FSM ©] Next ¢
Back 4
I 1
match l
nomatch
status([1:0]
7 Predict module

Figure 28: Predict Module Functional Block Diagram

40

in bit. Notice that the MSB of the output of the adder has been stripped off, the predicted
address is given by bits (26:0). This configuration works nicely because no overflow or
negative number is generated (the address wraps around the ends). The finite state machine
has to decide when to store an incoming address into the register file, when to replace the
line number, and when to predict an address. The FSM uses the nomatch signal to
determine whether a displacement change has occurred. It keeps track of two consecutive
nomatch signals. When the first nomatch signal is received, the FSM inspects the status
signal to verify that the line number presented by the Lnum signal is valid. If it is, the
address is latched into the register (PAR) at the current line number. If is not, the FSM waits
until the valid status is obtained, then latches the address. The line number is maintained
and will not be changed until this FSM sends the next signal to the replace module (this is
sent only after the second no match occurs). When a second nomatch occurs, the state
machine reads the previously stored value (ADD signal) and the adder performs the
prediction. The FSM waits for the result to come out of the adder, then asserts the pred
signal to inform the data transfer module that the predicted value is valid. The FSM
machine then latches the incoming address into the file register at the same location where
it just read. The current address now becomes the previous address for that line (this is why
only one current address register is needed). The FSM terminates by sending a next signal
to the replace module for a new line number. On the other hand, if a match signal is
received, The FSM checks the status signal and waits until the replace module places, into
the Lnum signal, the line number at which a match was found. The value stored at that line
number (previous already exists if a match occurs) is then read and a new prediction
address is generated for that line. The FSM sends the pred signal to the data transfer
module. This time, however, it does not send a next signal to the replace module. Instead,
it sends a back signal to the replace module indicating that the line number displayed prior
to the match line number should be restored. Last, if a match signal occurs in between two
consecutive nomatch signals, the FSM performs the match operation as described and

returns to the original place where it was interrupted. Although the assertion of a match and

41

nomatch signal will not overlap, the FSM will ignore both inputs if it happens. This

concludes the functioning of this module.

E. LINE REPLACEMENT MODULE

This module implements the modified version of the Second Chance algorithm. It’s
main function is to generate a line number and to switch, when a hit occurs, to the line
number provided by the hit detection module. Figure 29 presents the block diagram for this

module. The module uses a binary mod 128 counter with a flag associated with each count,

Y(6:0
(6:0) » D »p M Line[6:0]
COUNTER U —>
i X
> 1
increment
|
F> v v
A B
A=B
. Lnum[6:0]
Clear | ' Back
—1Y FLAGS . Lhit L 4 Next
Set g new <
oe W count
" 0 FSM < match
se|
status[1:0]
[4] -
"~ flagw | y
flagr
flag
Line Replacement Module

Figure 29: Line Replacement Module Functional Block Diagram.

42

two 8-bit wide registers, a mux, a comparator, and a finite state machine. When the FSM
receives a next signal from the predict module, it latches the counter’s output into one of
the registers and the register is selected (mux) displaying the current line number. At this
point, a valid status signal is displayed by the FSM. While the current line number is being
used by the predict module, the FSM determines what the néxt line number will be. To do
this, the FSM increments the counter and inspects the associated flag. If the flag is set
(logical 1), the flag is cleared and the counter is incremented one more step. The processes
is repeated until a count with a clear flag is found. At this point, the FSM goes to the idle
position where it is ready to receive a next command. Notice that the advantage of looking

ahead is that when a new line number is needed, the module’s response time is (T g + Tpux)

which is a very small delay. When a hit occurs, the module receives a match signal from
the snoop module. Upon assertion, the FSM displays a not valid status, waits for the line
number be provided by the hit module, then latches the number into the other register and
selects that register. A valid signal is then displayed. The flag associated with this number
is set. While this hit number is being used, the FSM compares the contents of both registers.
If they are the same, the FSM replaces the content of the first register with the next line
number (coming out of the counter) and proceeds with the increment-inspect process. If the
contents of both registers are not the same, the FSM waits for a Back signal from the predict
module to restore the line number that was displayed previous to the hit. It is perhaps
appropriate to explain why the FSM needs to compare the contents of both registers and
change one if they are the same. The reason behind this is that when the hit line number is
displayed, the predict module will generate a predicted address for that line and then will
send a Back signal to restore the interrupted line number. The replace module will switch
registers. Since the contents of both registers are the same, the same line number will be
restored and the predict module will override the just predicted address when the following
read access occurs. Therefore, to avoid this situation, the restored number is changed in the
event that both line numbers are the same. To conclude the chapter, Figure 30 presents how

each module communicates and interacts with the rest of the system.

43

Predicted[27:0] |2 |¢
=
[} =
2 | Msen=t
flush
LoadLine[7:0] s M
g
L 4 y F e
Hit Detection Module 2l g
.] I
A[27:0] E’ z
= &
¥l %
r‘ *
=
=
. =4
hit =
N 2
Abort 2
2 AL27] y B
(=}
T AD28] y S
= AACK »
§' Line Replacing Eg
=
7 g g § = y - g
B |& s |8 £
s i3 N
= = >
S — I
; % r N A
S 5o
v v A4
—> PA[26:0]
Predict Module | _Pred
Al26:0] .

* Not implemented.
** Data has been fetched

Figure 30: Intermodule Communication

44

IV. IMPLEMENTATION OF PRC MODULES

A. PROCEDURE

The modules described in the previous chapter were implemented utilizing Mentor
Graphics’ Design Architect, Cadence’s Verilog-XL, and Cascade’s Epoch 3.1. The
approach taken was to first generate the design at the schematic level using Design
Architect, and then describing the circuit either structurally or functionally using Verilog.
The verilog description was then input into Epoch for automatic geometry creation in

double metal, double polly, 1.2 micron technology.

B. IMPLEMENTATION

The schematic sheets generated with Design Architect (DA) were built utilizing

primitive and composite parts available from Epoch’s library of parts. All sheets have been

properly checked! and passed DA’s tests with zero errors and zero warnings. Although
these sheets could have directly been input into Epoch, it was decided to use them only as
a visual guidance for the verilog programming. The decision was influenced by the ease of
programming and fast simulation time provided by verilog. The files containing these
sheets are located on line under the “../RPB.mgc” directory. A print-out of each of these
sheets is included in Appendix A of this report.

The verilog files contain a structural description of the data path captured in the DA’s
schematic sheets. In addition, some files contains the functional description of the Finite
State Machines for synthesis in Epoch at compile time. Other files are expressed as a
combination of both descriptions. These files are contained in two directories. The
“verilog” directory, contains the verilog-in files which are the ones that provide input to

Epoch for geometry generation. The “vout” directory contains the verilog-out files which

1. Design Architects performs different types of checks on nets, instances, properties, frames etc.

45

are extractions of the generated geometries and contain delay information. The path to
these directories is “../projects/PRC2/directory”. A copy of the verilog-in file is included in
Appendix B. The verilog-out file is not presented in this report. They are computer
generated and are very extensive in size.

For each module, Epoch automatically created, placed, routed, and buffered the
geometry. Table 2 presents the specifications provided to Epoch necessary for the
generation process. Epoch outputs three types of transcripts; The netlist transcript, the
placement, routing and buffering transcript, and the extraction transcripts. These transcripts
are also extensive in size and a copy of them is not included in this report. They all are saved
in the “transcript” subdirectory which is located at the same level of the “verilog” and
“vout” directories. All Epoch files are contained in the “projects” directory.

The following sections provide additional information about the design and
implementation of the completed PRC modules. Their simulations are given in the next

chapter. See Appendix E for directions on how to view the generated geometries.

Table 2: Specified Parameters for Module Generation

Design Rule Orbitl.2u.2m.2p
Ambient Operation Temperature 25 Celsius
Default Clock Frequency 66.6 Mhz
Default Switching Factor 50 %
Maximum Voltage Drop 0.25 volts
Max. Simultaneous Switching Current 40 mA
DC Current Limitation 90 mA

46

1. The Snoop Module

This module uses four instances of a parity checker, an instance of dff register
and a Finite State Machine. Each instance of the parity checker generates an odd parity bit
for an 8-bit address bus. The generated odd parity bit is logical 1 if there are an even number
of 1’s in the 8-bit address bus. This bit is compared against the odd parity bit provided by
the cpu. If they are not equal an ERROR signal is asserted. The four error signals (one for
each instance) are “OR” gated to determine the parity error signal which is sent to the finite

state machine. Figure 31 presents the state diagram for this FSM. It fits nicely into a 3-

if (ARTRY=0) abort=1;

Reset:
state = snoop

read

4

&
nomatch nohit) ¢] [hit’:O]
101
if (hit=1) flush=1;
else flush=0; {write\ 4
001/

Figure 31: State Diagram for the Snoop Module FSM

dimensional hypercube. Notice that all communicating states are one Hamming distance
apart, eliminating the well known hazard problem. Figure 32 presents the convention used
for this state diagram and following ones. At initialization time, the register is clear and the
FSM reset to the “snoop” state (000b) where it is ready to snoop for a potential access.
When TS is asserted, the state changes to the “ptcial” state where the current address

register gets loaded and the parity error signal is inspected. If an error exists the state moves

47

Leyend;

signal Signal asserted high.

signal Signal asserted low.

[signal] Inspected signal.

[signal] , Inspected at the rising edge of the clock.

Unconditional change of state at the rising edge of the clock.

Conditional change of state. If signal is true change state,
else loop in that state.

State signal o . .
000 Unconditional assertion of a non-memory signal (asserted only
for the duration of the state).

State) ;¢ (signali]
000 / set signat2 Conditional assertion of a memory signal (asserted until explicitly changed).
else...;

signal Signal with memory. Set at rising edge of the clock, and remains at same
’ logic level until explicitly changed.

Figure 32: Legend for State Diagrams

back to the snoop position. Otherwise, it passes to the “type” state where the appropriate
signals are inspected to determine whether the access is a read or a write operation. For a
write access, the hit signal determines whether or not the flush signal is set. Similarly, for
aread operation, the Aif signal determines which state is entered. For this signal to correctly
be inspected, it needs to be provided within 3 clock cycles after the register is loaded. The
hit detection module provides the signal in about 2 clock cycles when the clock is
configured to a period of 15 nanoseconds (66.6 Mhz). Because the parity checker basically
constitutes the data path of this module, only this unit is shown in the schematic sheets
presented in Appendix A. The verilog description includes both the structural description
of the data path and the functional description of the FSM. The module was implemented
with what Epoch calls “Standard Cell” design, in which the physical module is optimized

for pitch-matched row placement rather than placement in a regular, bus-oriented grid.

48

2. The Hit Detection Module

This module is composed of two sub-modules; the hitmod module and the
encoder module. The first sub-module contains the set of registers and comparators as well
as the decoder and the bank of buffers. The second sub-module implements the priority
encoder, which is one of the few parts not available in epoch’s library. There is no strong
reason for keeping both as separate modules. Perhaps the only motivation is that hitmod is
the biggest module of the project and requires a great deal of time and system memory to
compile and simulate. Therefore, keeping the encoder out expedites the process of
compiling and simulating. The next sections provides information concerning the design

and implementation of each of these two module.

a. The hitinod Module

The hitmod module contains an instance of a decoder, a set of buffers, and
eight instances of the pbank component. The decoder is basically a PLA module without
the OR plane. It is synthesized at epoch compile time and its operation is expressed in a
tabular code file similar to a truth table. The decoder8x128 codefile is presented in
Appendix B.‘The set of buffers are used to aid the instances and handle fanout. Some are
implemented as standard cell and others as buscell (vectored bitwidth). The pbank
(prediction bank) component is a module by itself. It has been compiled and simulated.
This hierarchical structure significantly reduced the placement, routing and buffering time
of the hitmod module. The pbank module implements sixteen prediction lines. Figure 33
shows the circuit diagram for one of the lines. The 28-bits of the predicted address are
separated into an upper and lower nibble to store them in two separate registers. At
initialization time, the lower nibble is cleared and the upper nibble is preset (setting the flag
bit to logical 1). This configuration is the product of several different attempts. With just
one 28-bit wide register, the clock line could not handle the fanout. In addition, it was found
that each line worked better when implemented as a standard cell vice datapath cell (when

implemented as a datapath, Epoch arrange the cells in a bus-oriented, row-and-column

49

(= BUFFER= Default
= DFRAG= 0
o GROUP= “sbank”
z N=14
= Name= DFF_P
3 DFF
& pic
DN-1:0)
QN-1:0) /]]3\
clk /I—'T\D
HO > yZ 15 \
) /3 TN
2 |z
5
b /52N 5
7 s\ 2
& BUFFER= Default) &
DFRAG=0 - /TN =
GROUP= “sbank” /T0 22N &
N=14 T TN
Name=DFF_C
DFF Y/ TZ 26\
D(N-1:0)
Q(N-1:0)
clk
/1.0 BUFFER= Default
DFRAG=0
GROUP= “sbank
N=28
@ Name=EQUAL
EQUAL
AN-1:0)
Y
0
B(N-1:0)

Figure 33: Single Prediction Line Circuit Diagram

architecture. Datapath is typically more area-efficient than an equivalent set of standard
cells and has more balanced timing characteristics across its bitwidth). Finally, the module
was given the fixed block attribute, which means that it will remain as a block in the next
higher level design and will not be smashed or absorbed by that design. This is done to
preserve the electrical characteristics of the module and to reduce the compiling time

during placement and routing.

50

b. The encoder Module

This module was designed using the same technique utilized for the design

of the commercially available 74LS148, MSI 8-input priority encoder [Ref. 12]. The

following explains this technique and the way it was extended to encode 128 lines:

The first eight intermediate variables are defined (HO-H7). The variables

are then prioritize with respect to the inputs, according to the following logical equations®:

H7 =17
H6=16.~17
H5=15.~16.~I7

HO=10.~I1.~12.~I3.~I4.~I5.~I6.~I7

2
(Eq 4.1)
(Eq 4.2)
(Eq4.3)

(Eq 4.8)

Table 2 presents the Truth table for a simple binary 8-input encoder. From

the table, equations 4.9, 4.10 and 4.11 are obtained.

Table 3: Truth Table for an 8-bit Encoder

Inputs Outputs
Temp. var. A2 Al A0
HO 0 0 0
H1 0 0 1
H2 0 10
H3 0 1 1
H4 1 0 0
H5 1 01
H6 1 10
H7 1 11

A2=H4 +H5+H6 +H7
Al=H2+H3 +H6+H7
AO0O=H1+H3 +HS5+H7

2. The symbols ~, . and + are used as boolean operators.

51

(Eq 4.9)
(Eq 4.10)
(Eq 4.11)

The output equations of the priority encoder are obtained by substituting
equation 4.1 through 4.8 into the appropriate equations, Eqs 4.9-4.11. Manipulating the

results and performing boolean simplification, the following output equations are obtained:

A2=T4+15+16+17 (Eq 4.12)
Al=(12.~14.~15)+ (I3 . ~I4 . ~I5) + 16 + 17 (Eq 4.13)
AO0=(I1.~12.~I4.~I6) + (I3 . ~14 . ~I6) + (I5 . ~I6) + 17 (Eq 4.14)

One additional output is obtained by Eq 4.15. This output can be looked as
“Got Something”. The “GS” signal is asserted if any of the inputs is asserted. This is
particularly useful for the creation of bigger encoders.
GS=I0+11+1R2+13+14+15+16+17 (Eq 4.15)
The prioritizing and encoding of 128 lines was done in the following
manner; A module was created to prioritize 64 lines. To implement this 64 line encoder,
eight instances of an 8-input priority encoder were used. Each encoder instance
simultaneously applied Egs 4.12 through 4.15 to eight different lines. The resulting eight
A2-AQ outputs were tri-stated and connected together. This determines the lower 3 bits of
the final output. Equations 4.12 through 4.15 were again applied to the eight resulting “GS”
outputs. This prioritizes and encodes the eight groups. Now A2,-A0, determines the upper
3 bits of the final output. The “GS,” was combined with the “GS,” of a second instance to

form the 128 priority encoder. The logical “OR” of the two “GS,” determines the Ait signal.

A hierarchical structure was also used to construct the encoder module
However, the encoder8x3 and the encoder64x6 sub-modules were given a non-fixed block
attribute. Hence, they were smashed and absorbed at the highest level. Also, because of the

nature of these modules, their implementation was specified to be in a standard cell form.

52

3. The Predict Module

The data path of this module was implemented using two instances of a register
file, one instance of an adder, and various instances of a buffer, inverter, and “AND” gate.
The register file has one write and one read port and is capable of storing 64 lines. It is
available only in datapath form. The set of buffers and gates are used to decode the most
significant bit of the write/read address in order to select the appropriate register file
instance. The inverting buffer provides a logically inverted input to the register file. The
adder is a carry look ahead adder with carry-in bit, also implemented in datapath form. The
finite state machine was minimized and synthesized at compile time by Epoch. Figure 34
presents the State diagram for this FSM. The states, fit nicely into a four dimension
hypercube. Each cube keeps track of a “nomatch” signal. If a match occurs in between the

two consecutive nomatches, the states cycle through the prediction process and return to

Reset:
state = Idie0

)
=
<
-
]
=
=
¥
=
2]
-
3
£
=

* if (match) flag=1;
else flag=0;

Figure 34: State Diagram for the Predict Module FSM

53

the place where it was disturbed. At initialization time, the machine is reset to the IdleQ
state. In this state, the match and nomatch signals, asserted or negated by the snoop module,
are inspected at the rising edge of the clock. If a nomatch is received, the state changes to
the standby state where the line status signal is inspected. This state waits until the line
number is valid (if the replacing module is working properly, this signal should already be
set to valid and the process is delayed by only one clock cycle). The FSM proceeds to issue
a PAR signal (store address as previous in register file) and Back signal (hold the current
line number) and then settles in the idlel (1010b) state where it again inspects the match

and nomatch signals. In this state, if either one is asserted, the FSM records in a flag which

signal was the asserted one and then proceeds to perform a predict cycle’. The FSM
inspects the flag bit in the Wait state (1101b) to determine Whethér it should reset to the
idlel or idle0 position. If it is to the Idle0, the machine sends a next signal indicating that a
new line number should be provided. Otherwise, it sends a Back signal to restore the line

number displayed prior to the hit.

4. The Line Replacing Module

Figure 35 presents the data path for this module. The binary mod 128 counter is
implemented by a high speed ROM and a D-register. The ROM operation is best described
by the following equation:

—— {KH for 0 <=K <126 (Eq 4.16)

0 for K=127
where K is the binary input to the ROM. The equation expresses that the ROM
holds the value (K+1) at location K (for; 0 <= K < 126) and the value (K-127) at location
K=127. When an increment is required, the ROM’s output is fed back to it’s input by
loading the feedback register. The ROM operation is specified in a codefile (presented in

Appendix B) and is synthesized at epoch compile time. The flags are set and cleared in a

3. The reader is reminded that both signals match and nomatch are asserted for one clock cycle.
Therefore, the FSM needs to save which one occurred for later use.

54

Y(6:0
(0 » D M Line(6:0)
ROM Y >
P 1(6:0) > X
@ -
Q D« »D Q
v
< count r> A B
A= s
init
8 . Lnum(6:0)
a -
D 0 =
| _:I'— 1 Back
RAM ' i)
] M 0| Lhit__ v v [| Next
A(6:0)¢ g new
oe w
1 count
< <« e o FSM < match
L status(1:0)
0 >
flagw T
flagr
flag
Line Replacement Module

Figure 35: Data Path of the Line Replacing Module

static RAM module which has static address decoding for fast access time and reduced
power requirements. The FSM for this module also fits nicely in a four dimensional
hypercube. Figure 36 presents the finite state machine for this module. At initialization
time, all the registers are cleared and the state machine is reset to the ready state. In this
state, the zero input is selected in all the muxes and a status of “valid and ready” is
displayed (the line number is valid because the register’s output is 0d, hence line number
zero is ready to be used). The feedback register also feeds 0d to the ROM, making the
ROM’s output to be 1d. At this point the flag is not inspected because no line has yet been

used. No further action takes place and the FSM loops in the ready state until either a next

55

Reset:
state = ready
sell =0

sel2 =0
status = 00;

[back]

[mmatch)
sell=1; sel2=1; status =

snjeys

10

[comp=1]
sell=0

Figure 36: State Diagram for the Line Replace Module FSM

or a match signal is received. When either one of these signals is received, the FSM
performs the operation as explained in the previous chapter. It is important to point out
certain aspects of the design. This module determines the maximum clock rate of the
system. For the module to correctly inspect the flag signal, the clock pulse between the
“count” state (0011b) and the “read” state (0001b) must be higher than the time it takes to
increment plus the time it takes to mux and hold the increment. This is best shown by
equation 4.17.

Tp > (Tase + Trom + Topux + Tsetup) (Eq 4.17)
where,

Tp is the minimum clock period

Ty is the delay time from the clock input to the data output of the dff-register.
Trom 1s the delay from input to output of the rom

Ty 1s the delay from input to output of the multiplexer

Tserup 18 the address setup time of the RAM.

56

V. SIMULATIONS

A. GENERAL

Once a verilog description was obtained for a module, the code was simulated at the
logical level before being input into Epoch (verilog-in files). After geometry creation, an
extraction was performed and output in verilog form for a second simulation (verilog-out
files) which included capacitance load and delay information. Both simulations were done
utilizing the same testshell file. These files are presented in Appendix C. Two copies of
each of the simulation files exist. One copy is located in the verilog directory and the other
copy in the vout directory. In both directories, the verilog-in/ verilog-out files have a “.v”
extension and the testshell files have a “.i.v” extension. In addition, the vout directory
contains files with a “.sdf”” extensions. These files provide the capacitance load and delay
information for the respective “.v” file. Furthermore, both directories contain files with
“.zsim” extensions which are the transcripts obtained from the simulations. Because of the
large size of these transcripts, a copy is not provided in this report. Verilog also outputs a
time waveform diagram which can not be saved or nicely captured due to its black
background. To simulate a verilog-in file, the following command should be used (in the
verilog directory): ‘

“prompt> verilog +libext+.v+ -y /tmp_mnt/local/epoch/models/cmos/verilog filename.i.v filename.v”
the “.v” file should be followed by any other “.v” files which are part of the hierarchy. The
verilog-out files are simulated by using the following command (in the vout directory):

“prompt> verilog -v /tmp_mnt/local/epoch/data/verilog/primlib.v filename.i.v filename.v”
this time the “.v” file is not followed by any other file, not even the “.sdf” file (verilog
automatically looks for it in the current directory).

The simulations performed are far from being exhaustive, nevertheless they cover and

test the basic and fundamental parts of each module. The following sections present a brief

57

description of the simulations performed in each of the implemented modules. The
description is intended to provide enough information for the understanding and editing of

the created test.

B. THE SNOOP MODULE

The snoop.i.v testshell file tests both the data path and the finite state machine of this
module: The program starts by initializing the FSM and interface signals, then proceeds to
simulate five accesses. The first one is a write access with wrong parity bits. The parity
checker of the module detects this and sends a parity error to the FSM. During this access,
the FSM enters state 2 and returns to state 0 upon receiving the parity error signal. The
second access is a correct write access with no hit. The FSM successfully cycles through
the 0-2-3-1-0 states and does not raise the flush signal. The third access is also a correct
write access, but this time with a hit. The FSM cycles again through the same states and
raises the flush signal. The fourth access is a correct read with no hit. This forces the ESM
to cycle through the 0-2-3-7-5-4-0 states. The last access is a correct read with hit. The FSM
follows the 0-2-3-7-6-4-0 path. This completes the test for the module.

C. THE HIT DETECTION MODULE

Three testshell files exist for this module. The hitmod.i.v, the pbank.i.v, and the
encoder.1.v file. The first two files are basically the same, the first one tests for the entire
set of 128 lines and the second one for a subset of 16 lines. Only the pbank.i.v file is
explained here, because the rational is the same for the other one. The encoder.i.v tests the
encoder submodule.

The pbank.i.v testshell program starts by initializing all the registers. The upper nibble
register (bits 27-14) is preset and the lower nibble register is cleared. Two nanoseconds
later, a requested address (0000002h) is input. All the comparators find a no match
condition because no predicted address has been saved (MSB is 1). Later a predicted
address 0000003h is stored in line 0. Four nanoseconds later, the requested address changes

to 0000003h and a match condition is found by the comparator of line 0. The same process

58

is repeated for line 16, then for line 1. This completes the program. There is no real need to
verify every single line because they all are replicas of line 0.

The testing of the priority encoder is simple. A number is presented at the 128-bit bus
input. If the number is anything but zero, the encoder should assert its hit output and
provide the binary number of the position of the most significant 1 of the input. Notice that
if a match is found in line 0, the input to the encoder will be...0014. The program
encoder.i.v first presents the number 000000000000000000000000000000004 and the
encoder outputs hit=0. Ten ns later, it presents 0000000000000000ffffftfffffffffh. The
encoder outputs hit=1 and Lnum=3fA (decimal 63), which is correct because the most
significant 1 is in position 63. An easy way to verify this is to multiply the number of f’s
by 4 and subtract 1. The program next presents number 000000000000000fffffffffffffth
for a Lnum output of 43A. Later, it presents 000000000t ffffffffffff~# and then
fEEFEFEEECEEEFEFEECEEFEFEfft A (which is the worst case). The output of the encoder is Sbk and
7fh respectively. This terminates the testing of this module.

Something not mentioned about the hit detection module is that both submodules were
not assembled together in a higher hierarchy. As explained, they were separated because of
compiling and simulation latency. Introducing an additional layer would not be beneficial
at all. The best way is to glue them at the top-most hierarchy where all the modules are put

together.

D. THE PREDICT MODULE

The data path and Finite State Machine of this module were also implemented and
simulated independently. Similarly to the hitmod module, the register files and adder of this
module constitutes a big portion of the chip and they take a great deal of cpu time and
system memory to simulate. The predict.i.v program tests the data path of this module. The
program presents seven consecutive read accesses. The first address 0000001h is latched
into the previous address register of line 0. Like the pbank module, there is no need to

switch and test every single line number, therefore the register file is fixed to line 0. When

59

the second address of 0000002h is presented, a predicted address of 0000003h is
successfully generated by the adder. The second address now overrides the first address.
A new address of 0000003h is presented and the process repeats, generating 0000004h. A
fourth address of 000005h is presented and a predicted address of 0000007 is generated.
The interesting part comes when the address of 0000000h is presented. The displacement
is -0000005h. The adder produces the address 7fffffbk, which is also correct. The address
7ftittth is the maximum address addressable by A(26:0). This proves the point that the
developed technique wraps around the ends. To confirm that it also works the other way
around, the programs shifts to line 1 and stores the address 7fffffd/. Then it presents
address 7ffffffh. This gives a displacement of 0000002h, which added to the presented
address, gives 10000001h. The module throws out the MSB and outputs 0000001h, which
is the correct prediction.

The pmfsm.i.v program was created to test the finite state machine that controls the
data path of this module. The idea is to create cases and force the FSM to enter all of its
states. The program starts by resetting the sate machine to state 0. Then, it simulates a
match case which makes the machine cycle through states 0-2-3-7-5-1-0. It proceeds with
a nomatch case. The FSM moves from the idle0 position to the idlel position along the 0-
4-6-e-a path. Another match is issue and the FSM cycles again. This time, through a-b-f-d-
c-e-a states. The program terminates with a nomatch case to return to the idle0 position

along the b-f-d-9-8-0 path.

E. THE LINE REPLACING MODULE

The linerep.i.v program tests both the data path and the Finite State Machine of this
module. The procedure is similar to the previous module. The FSM is forced to enter all of
its states. At initialization time, the FSM is reset to state 0. At this time, line number 0 is
displayed. A match at Line number 4 case is simulated. The FSM replaces line number 0
with line number 4 for a period of time and then restores line number 0 when a back signal

is received. For this, the machine cycles through states 0-8-a-b-f-e-c-4-0. This causes the

60

flag of line number 4 to be set. The program proceeds and issues 6 consecutive next signals.
This forces the FSM to cycle 6 times through the rest of the states (0-2-3-1-5-4-0). At each
next signal, the line number should increment. When the fourth next signal is received, the
line number jumps from 3 to 5 since line number 4 is skipped because its flag was set when
inspected at state 5 (this is the only time that state 7 is entered). This completes the program

and the simulation process.

61

VI. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS

The results show that the Read Prediction Buffer IC works correctly and fully
implements the intended algorithm. This is a positive sign for the VLSI design process
utilized at the Naval Postgraduate School. Furthermore, the testing of the RPB gave insight
into the design of the Prediction Read Cache. This enhanced version was not completely
designed and implemented as part of this thesis work. However, the basic structure and
ideas have been documented, and they will be of great significance to future research. Four
out of six modules were designed and implemented. These modules were successfully
simulated in isolation, but they may require some synchronization patching when glued
together in the next higher hierarchy. Finally, this document may serve as a guide when the
testing of the finished PRC comes about, since the process of testing an IC with nontrivial

algorithms is not well explored in the literature.

B. RECOMMENDATIONS

The algorithm implemented by the RPB and PRC integrated circuits embodies a novel
approach to improve memory subsystem performance. It is recommended to future system
developers to consider the presented approach and seek further gains in performance from
improvements to the memory hierarchy, at least until significant advances in DRAM IC

access times are made.

62

APPENDIX A. SCHEMATIC SHEETS

This appendix contains the schematic sheets for the data path of all the implemented

modules of the Predicted Read Cache IC.

1. ParityChecker.....oouieiiiiiieiinrncesrecacassssnsnnsnnons p.64
2. PbanK........iiiiiiiiiiiii ittt ettt p.65
3. HIitmod.......ciiiiiiiiiniieiieoecossscssosnsossssasssnseisP.00
4. Encoder8x3......ciiiiiiiiiiiinititetercnottacrcctesonannans p.67
5. Encoder64x6.......c00ceteeeiitsncorsrsssscscassssonsossnos p.68
6. Encoderl28x7......ciiiiiiiiiiiiiiiiiiiiiiiiotercntncasasan p.69
T, Predict....covieiiiiiiiorneeneeoosacascsscssnscassssonanns p.70
TS 1 ¢ 1<) o) o J P p.71

63

(0:€)0dy < peostmes

———__1N3

ENI
3dY < ,\wz.wﬁl

N O\

b 3 OJLISIHYN
LNV 4 3¢3344n8

NBIAL= T LIW 3
=N
WOLAY .= MO \
=9V 71 440
LNY43G=33 3 4n8

2]

40343 3033
Nid T Nid i .\lnllln.lnl.lg
N394 N394
©'1-NOG {0'L-N)0
JONLIAVEIMN ALIaVd NALIIVEIMWN ALldVd
&N s 8N s
Ay1 Jec4N0AY Ayt 4804039
129V 14d0 9V 1440
v 3e-434308 11V43GF 334308
£
T d0433 R 40341
) Se—) S
T N39d " N394
. [] W10
U OMIAVEIN | ALLaVd ALV INVN ALIdVd
8N emrirsrars 8N e
Ay aed=ygnoyo Ay1aed=4nnyy
129V 11d0 129V 1340
LIV $30-334 48 1INV 43G:343n8

saINaNNN

(0:E)dY

N\ -\

(O 1EV

. : Hx!
: \
4
| By b R by
14 X £ 1
l U@ i@ bl it 5.,1 ﬂ,L

i ! HEE N | !

il H A ﬂ i ;’i
MRS Ae A B
| —L- - .)
| !
| + I

73 (i :(t Vi (i |
i i | fid b —
? l: '“:I—‘ ! ‘: E—I [s : g
SR T, - (UIEIRY ; - JRSTIOOE IOOOTO ¢) meu..‘_’" pUTHItIHeS
-- éi’!: ;i!,- ”; “_: zi’ 1 ‘!; "!; ! ;
i _%T—'Fh‘tj_ ﬁlﬁ:EE’m{Ur; m.l - !kh-—*’_ !z.;{:jmjr: |
= Tl By e, B
' g g !
— Q@G O O 4o R et O 1t
= T il gl | bl B il s
—?_Tj sbl't;}’_— | t "'—J HF_‘ i l' F :Li'T_—.})_—m I l"T—_-I] | i .
‘ 'l il 'r i'! i}g (
1 il l : il — 4 —
i : :Erf ‘l;l_ : d ' HIER]
| T O T IO, T | | T
il i wil i gl |]
ll -.l_fll‘ji:_lf E ‘3:: lfl:‘l-_ ll.l:ljdil - ‘ -%-T:_‘z T —L—_'

b,

e L

i ik ; Ei g \ '
AV i A ﬁﬁ ANk

<ol
\ Smer.bﬂZ

IV iXFa3ie g
UL

GOV 1 40 oy
1Y D334 aNa _ - _
P til] n?!vEO.I.YL Jenq iy ».h!vgc...vrl'l—
pueqd e ueyd Wi
A® Pony
(i] T
NN AN N S ——_——

ANHOIS: VN
1Y 0F331x8 n

pyYyy 7
E ﬂ IIA*IIAU:E
N INB0ISE3uvH
~ 1N A e
L ﬂ ’w l
TIPS Pn SR | INBAIS IV

ueqd 1NVIAFA3ING 18

7_
SO (0542300700 1]
eqd w1
@i

. 79 7

-
<

_'] 2N

Fs
v
N

AT

X AN

1L m g
1

sy :5-5:.”.(.. I sy (o :_!....H,.-. INBOLS YN m
yeqd ueqe 1NVF¥IINE g
< <
] | i H M i u\
e - ~ @b 1y [e (0 L) 300V PBOY
ﬁ\ A A 74 Wiun
N X h N Hﬁ ™
¥I00IF JWvN 330000
-~ . _] 9w o3 220xg 900300 33 53000
[REIT TV vpewwd M | [SPFOC TV B | nwhuu
WX LT N ey
Wl -
4 £ R
YYYYYvvrry g m AR ¢ F
i g ek i g 3,0
3 N TN e D oand “ N AANNN . A ogek
. , \/ HEr _ \/ §ugsd
- TXGOom - TTLOoOe
3 o, g ¢ F
£ 3 ; b £ ; % <J(0:£2)300v4
LIRS | 3 9at & ff 3
ZSa 0 = E2d 0 *
oy, 2 oa,,
SEERY SEgHy

—(0'L2)300vd

LEFELS
ot
r_.

P e

91NPOW POW Y IH

N
BN
1 ALANIOLS=3HVN %
LINVIIEITIING TALANI FAONOLS= VN b3ON -
170¥430-3314nd ING0LS= MYN
VAN 18
.
— ——,
ANIOIS= MW G015 MYN
1INYIFA34IN8 ANDIOYSI0S33EING NG
OA _ v
on o
ANIOLS® YN ANG01S™ VN
1INYI30:334308 ANIINVAIGRIIING 4N
N
8Nl
131 ANIOLS® 3N
1IWVIIFIIIING TALANI
o—— ¥
11779 ANIOLS: 3HYN NGULST YN /_
1INY 30334408 ANLTAYAI0RA34ING g
. £ELE1OVO1S YN geeelov
1NY33F2343n8
N
- - AML v
' INGOLS- VN L
LINVIIEAIING N8
Ll
\e] . i
anad N
d < E Z) y
[3LANLO1S YN ~—3] T e < ISy
1NV430-334408 T3LANI 0] \ iwﬁw—mﬁﬁz =~ . swﬂ_w_m&:(z
. — NVIXEATLNG ANDINYIIFAIIING g
0OV <3 N
N
A Ty I
et .| T
PPbbIOVOIS- WYN PoPhIOY -] .\
110Y 430-333308 o
.,:Sawwzf/u
110vV330-331308 ns
HS9 < e A —
PN
RERROCI
JWO A “ —— e, - . . U e e e et e st e e e o

—— e N UREE]

J1NPoUaNS £X§IOPOIL |

<Ju3

{0°9)300¥H <}

YIRS

1 LN LididnZ bttty R
I'Oﬁ OQ IMLLBMY IR)
ISR Taima +30M0157 W U.-l * L /mluuu
va-aue : a1 AONEMN oW
L0014 20 1YW Orsine
[T 2T 7..@ 4.
-
oy]
Hﬁr [R (4 1]
] _ RE
@
gsﬁ o YD LY W on
- = = ¥
g e e e e e | v jUO|> VY 420011 48
: _ . s I
L 1 _.lr.li,l N
I g
— _ . e =
Z30)
Y —di-q_uumlh b r SOMVO15" W 100
T N S
Gl . P -
=S 1
H M M. - e o
iy
S J iyl NP AW ton
'“'ﬂ_aﬁ-‘tﬁ s [HINIXITaw
vy
e memm e . = 11 : =
m @L ace-vg +
2H0I8° MW Tl hud IV a3
VX N - o
— et - 1] A2y
= & ” Il P = I
10157] |- -
nire Jaam - : ,MIL n!é.s«!#“ﬂ (- v_‘ _!.mlwulvl
[L6 =TI imirie fbv.. O0IE Mw _ VOW
. . 5 ZRTTI WO T T
RO — = L. - — L% . CLLELS JTT.. N
1OV015° N L2l [7 SORUUSUNI b 08 = . -
Rt R ﬁ f b 5 8 1 0 0 N = P I g
<1 w A =
-Luﬂu‘.”wﬁ w ' VOIS MW ion
2. LI a)) e
—HHHHFH Y
- Ll COMVUIP- BW & T T T T
CUOUIS MW 2 bl LT T] ”
P] v
158
£ Xg8J4apoduy
.
{ ﬂm_ bI0IT MW b
s <Y — 2~ IR Ie S <O 1IN
\ﬁm“’ﬂ N
i] 13]
] /./bllIlQ |||||| ~J(0- NI
PR0Q15 B 124
DM Xrading e] <30 1ISNI
% —<(0 1IN
(.
AN L ——=-<(B- L EN]
YOGS MW 12
$000 <} e m iR e . ——<J0 1)2NI
g </ B pa . <20 11N
PR 50 MW a0 T omra———nas
N [y N4 — LT/ e O 10N
L
VXAl

1
HYHE=1N801S

Jng BALLEB=1TNY 430)

ST

M

9X},948poous

(0:9)d00VLIH <F—

8
2
,,..3]]“142— v YIJ
J R S -
L L
20NV MYHE=20NVOLS g
BALLES=1 10V S~ g
t

1IH

599

) !
230015=3HYN 230 —soou

T
I

&

1NV430=4344n8 €0 L)LN]

0-S)300vH €0~ LI9N]

9xp,g+t3posua

<3(B: LZION]

[XQ2|J8poou

69

(8:92)U01 121 PD a3 <}

1wy

1=
LIV PI iy

LIk}
[CRRUT]
(B i-%uNs A
103 :

VCGY ey
3. N

0

LT

LYWW IkF3IING

Slatad

NV,

FUW 1) 0]

12tpaud 9Jo3s
Emﬁs_m%EA
- 1NVIXFIIING 09
<ol
smEm..uﬂZ
1NYII0-33408 3w
» > > >
E ER | ¥
. Jge (. Jee N H-EWT
- L] A "/ &R Ao
L% L3 L% LE
gR =5 £k Sk
&> &> & &>
NG N mm N m ~ “
- - ~ —
n o @
18 LR & 5
3 4
/AN ® ﬁ 33 A\N z E33 W —
M m m. m M m _Mm_. (& ._...
. 5d &3 b b3
= 85 85 -8 gk LNEN g3
Gy S2 s S 9=N
U m Lt » - «HBIPIY.-dN0AD o1 0L
\\tl, - 079 1440
\\MM . e 1NV 430543 4308
Vo »n
1408 YN 333304
- wu]
P Wik wn awe afed PRELERAULEF I TiT. o]
« _ 0°9Y 1110
a 4J [CENHT] RO AT ERY 1]
™ a) — (AR P U0 WYN EERN L]
™ Q Rt IN
[s N S — L8136 4., 1KY
\Hl.:ﬁ AL JO3F 3HYN 314934 0°9¥ 1440 .}/
_\\A_IWM v%wmwmﬁ 1NV 430-33 1408
(1) 5
a— @ﬂ:
\:llzm {401321p844.2dN0YI
\ﬂl:M IR L EE-EBE o1]
—
“M|hw
5N
3\
P
ST\]
=
A @4
[T
©: -0
(IR
AL J03F IWYN 303034
vwmawo: ANL NG JWYN ANI N8
L2=N 2N
9y LB = i P g}
24812109945 4N0YD

(B-9)Jppeaur)

e <)) 92) JPPRY

<} Jbeyy
% <nbe)y
(@)
»o <J1hes
L 3
(8 1-MV L
681 <}——-] wi-nnm s
(8}1-NINIO s
JI 2ANEIWN XM
A JY 1¥3 ILDNN—UW
R W o Fov1ida .
s21-auon 1nY43¢-334308 <J(B:9)unu]
= ZAMWALS=IVN XN
FNY 10014 11Y436-3343n8
1NV 430-3334n8
. <J2198
(6:4-M8 — <Jyu
Juwod <},
< JHneu
(0 1-N)Y T —
<3 uUNod ~
:sowu“(z 0332
=N
+d¥1¥0.=dN09 -~ 1 1147
19¥13d0 u (@)
110V 136334308 £
27 3K VN i
LN
H1v1vQ.2 41089
1=9Y 1440 e
1V333343n8 .
1.0 "
N N 110 YHEDD" 100
O et
o . CEONL=.dVIVC..
DbLIYCA
« BNLLEK=1NV 430
(0:9duy % O K)
—!-,k.}
w1wad " e (0:1-M) 1000
ZMEIN XN A4 30
=N N
: wdV 1Y, N0
| s A
Iy - i ——— —
V08 HOJ® JWVN Hoa
) 82840
81! §6P0° J81UN03,=37] §300D
(=N
: [
: 82150201
10V 33F3 4408
aynpary N e yday et

72

I

i

APPENDIX B. VERILOG-IN FILES

This appendix contains the verilog hardware description code for all the implemented

modules of the Predicted Read Cache IC.

9.

10.

11.

12.

13.

14.

15.

16.

17.

S 11070 4 T8 2 pp.74-77
PhanK.v. ...ttt i i i i it ettt o s pp.78-82
Hitmod.v.................. e echeicisett e ans pp.83-84
Encoder.y ...ttt tiiiettetrenanannas pp.85-88
Predict.y ..ottt it it e it e ittt pp.89-90
Pmfsm.y. .o i i i ittt e e pp.91-94
0014) T 3PP pp.95-99
Rom.codefilecc0.nn eseessesisecenaons pp.100-103
Decoder.codefilecciiieieniniiiienenenenacnnnns pp.104-107

73

/* Finite State Machine for the snoop module, functional description in verilog
#¥ [snoop.v] file

¥

module snoop (clk,Raddr,prty,next back, TS, TT,CL TBST.ARTRY hit en,
AACK,Abort,flush,match,nomatch,init,addr,prtyout,A28,A27);

// epoch set_attribute FIXEDBLOCK = 1
“define encode

“define low 1'b0

“define high 1'bl

parameter // epoch enum stat

$noop = 4'b0000,
ptcial =4'b0010,
type =4'b0011,
read =4'b0111,
Yhit =4'b0110,
waitl =4'b0100,
nohit =4'p0101,
write = 4'b0001,
dc_state = 4'bXXXX;

input [31:0] Raddr;

input [3:0] prty;

input [4:0] TT;

input clk,hit,init, TS,CI,TBST,ARTRY ,next,back,en;
output AACK,Abort,flush,match,nomatch,A28,A27;
output [27:0] addr;

output [3:0] prtyout;

wire [3:0] pgen;

wire [27:0] temp;

reg AACKEN,Abort,flush, CAR,match,nomatch;
reg [3:0] /* epoch enum stat */ state,next_state;

supplyO GND;
supplyl VDD;

74

/* Data Path */

paritycgo #(8,1,"DPATH")
PC1(Raddr[7:0],prty[0],E1,pgen[0]);
paritycgo #(8,1,"DPATH")
PC2(Raddr[15:8],prty[1],E2,pgen[1]);
paritycgo #(8,1,"DPATH")
PC3(Raddr[23:16],prty[2],E3,pgen([2]);
paritycgo #(8,1,"DPATH")
PC4(Raddr[31:24],prty[3],E4,pgen[3]);
stdor4 OR1(E1,E2,E3,E4,PE);

tribuf #(4,1,"DPATH")
BUFI1(en,pgen,prtyout);

dff_c #(28,1,"DPATH")
CARI1(CAR,init,temp,addr);
stdtribuf BUF2(AACKEN,GND,AACK);

assign temp[26:0] = Raddr[26:0];
assign temp[27] = GND;
assign A27 = Raddr[27];
assign A28 = Raddr[28];

/* Finite State Machine */

always @ (posedge clk or negedge init)
begin o
if (!init) state= snoop;
else state= next_state;
end

always @ (state or PE or TS or TT or CI or TBST or ARTRY or hit or back or next or
Raddr[31:29])
begin

nomatch="low;
match ="low;

CAR ="low;
Abort ="low;
flush ="low;

AACKEN = "high;

75

case (state)

snoop: begin
if (TS==0)next_state = ptcial;
else next_state = snoop;

end

ptcial: begin
CAR = "high;
if (PE==1)next_state = snoop;
else next_state = type;
end

type: begin
if (TBST ==0&Raddr[31:29]==3'b000&CI==1&TT==5h1e)
next_state = read; '
else next_state = write;
end

write: begin
next_state = snoop;
if (hit==1)flush = "high;
else flush = "low;
end

read: begin
if (hit==1) next_state = Yhit;
else next_state = nohit;
end

Yhit: begin
match = "high;
AACKEN ="low;
next_state= waitl;
end

nohit: begin
nomatch= "high;
next_state= waitl;
end

76

waitl: begin
if (ARTRY==0) Abort="high;
else Abort = "low;
if (next | back) next_state = snoop;
else next_state = waitl;
end

default: begin _
next_state = dc_state;
end
endcase

end

endmodule

77

/* Predicted Addresses Storage module, structural description in verilog
** [pbank.v] file
*/

“define numbits 28
“define group "SBank"
*define group2 "Buffers"
“define celltype 0

module pbank(PADDR,RADDR,store Addr,init,hitbus);
// epoch set_attribute FIXEDBLOCK = 1

input [numbits-1:0] PADDR,RADDR;
input [15:0] storeAddr;

input init;

output [15:0] hitbus;

wire ["numbits-1:0] PADDRBuf RADDRBuf;

wire [15:0] storeAddrBuf,local,loadU,loadL;

wire [(numbits-1:0] SA0,SA1,SA2,SA3,SA4,SA5,SA6,
SA7,SA8,SA9,SA10,SA11,SA12,SA13,SA14,SA15:;

supply! high;
/* Buffer inputs */

buff #(numbits,0, group2)
BUF1(PADDR,PADDRBuf);
buff #(" numbits,0," group2)
BUF2(RADDR,RADDRBuf);
buff #(16,0, group2)
BUF3(storeAddr,store AddrBuf);
buff #(16,0," group2)
BUF4(storeAddrBuf,loadU);
buff #(16,0, group2)
BUF5(storeAddrBuf,loadL);

78

stdbuf BUF6(init,Lower);

stdbuf BUF7(init,Upper);

stdbuf BUF8(Lower,CLR1);
stdbuf BUF9(Lower,CLR2);
stdbuf BUF10(Lower,CLR3);
stdbuf BUF11(Lower,CLR4);
stdbuf BUF12(Upper,PRE1);
stdbuf BUF13(Upper,PRE2);
stdbuf BUF14(Upper,PRE3);
stdbuf BUF15(Upper,PRE4);

/* This is line 0%/

dff_p #(numbits-14, celltype, group)
storeOU(loadU[0],PADDRBuf[27:14],PRE1,SA0[27:14]);

dff_c #("'numbits-14, celltype,” group)
storeOL(loadL[0],CLR1,PADDRBuf[13:0],SA0[{13:0]);

equal #(numbits, celltype,” group)
compare0(RADDRBuf,SA0,local{0]);

/* This is line 1%/
dff_p #("numbits-14, celltype, group)
storel1U(loadU[1],PADDRBuf[27:14],PRE1,SA1[27:14]);
dff_c #('numbits-14, celltype,” group)
storelL(loadL[1],CLR1,PADDRBuf[13:0],SA1[13:0]);
equal #(" numbits, celltype,” group)
comparel (RADDRBuf,SA1,local[1]);

/* This is line 2%/

dff_p #("numbits-14, celltype, group)
store2U(loadU[2],PADDRBuf[27:14],PRE1,SA2[27:14));

dff_c #('numbits-14, celltype,” group)
store2L(loadL[2],CLR1,PADDRBuf[13:0],SA2[13:0]);

equal #("'numbits, celltype,” group)
compare2(RADDRBuf,SA2,local[2]);

/* This is line 3*/

dff_p #('numbits- 14, celltype, group)
store3U(loadU[3],PADDRBuf[27:14],PRE1,SA3([27:14]);

dff_c #('numbits- 14, celltype," group)
store3L(loadL[3],CLR1,PADDRBuf[13:0],SA3[13:0]);

equal #(numbits, celltype,” group)
compare3(RADDRBuf,SA3,local[3]);

79

/* This is line 4*/

dff_p #(numbits-14, celltype,” group)
store4U(loadU[4],PADDRBuf[27:14],PRE2,SA4[27:14)]);

dff_c #('numbits-14, celltype, group)
store4L(loadL[4],CLR2,PADDRBuf[13:0],SA4[13:0]);

equal #(numbits, celltype,” group)
compare4(RADDRBuf,SA4,local[4]);

/* This is line 5%/

dff_p #(numbits-14," celltype,” group)
store5U(loadU[5],PADDRBuf[27:14],PRE2,SA5[27:14]);

dff_c #("'numbits-14, celltype,” group)
storeSL(loadL[5],CLR2,PADDRBuf[13:0],SA5[13:0]);

equal #(numbits, celltype,” group)
compare5(RADDRBuf,SAS5,local[5));

/* This is line 6%/

dff_p #(numbits-14, celltype, group)
store6U(loadU[6],PADDRBuf[27:14],PRE2,SA6[27:14]);

dff_c #('numbits-14, celltype,” group)
store6L.(loadL[6],CLR2,PADDRBuf[13:0],SA6[13:0]);

equal #("numbits, celltype,” group)
compare6(RADDRBuf,SA6,local[6]);

/* This is line 7*/

dff_p #('numbits-14, celltype,” group)
store7U(loadU[7],PADDRBuf[27:14],PRE2,SA7[27:14));

dff_c #('numbits- 14, celltype," group)
store7L(loadL[7],CLR2,PADDRBuf[13:0],SA7[13:0]);

equal #(numbits, celltype, group)
compare7(RADDRBuf,SA7,local[7]);

/* This is line 8%/

dff_p #(numbits-14, celltype,"group)
store8U(loadU[8],PADDRBuf[27:14],PRE3,SA8[27:14]);

dff_c #('numbits-14, celltype, group)
store8L(loadL[8],CLR3,PADDRBuf[13:0],SA8[13:0]);

equal #("numbits, celltype,” group)
compare8§(RADDRBuf,SA8,local[8]);

80

/* This is line 9%/
dff_p #(numbits-14, celltype, group)
store9U (loadU[9],PADDRBuf[27:14],PRE3,SA9[27:14]);
dff_c #('numbits-14, celltype,” group)
store9L(loadL[9],CLR3,PADDRBuf[13:0],SA9[13:0]);
equal #(" numbits, celltype, group)
compare9(RADDRBuf,SA9,local[9]);

/* This is line 10*/

dff_p #(numbits-14, celltype, group)
store10U(loadU[10],PADDRBuf[27:14],PRE3,SA10[27:14]);

dff_c #('numbits- 14, celltype,” group)
store10L(loadL[10],CLR3,PADDRBuf[13:0],SA10[13:0]);

equal #(numbits, celltype,” group)
compare10(RADDRBuf,SA10,local[10]);

/* This is line 11*/
dff_p #(numbits-14, celltype, group)
store11U(loadU[11],PADDRBuf[27:14],PRE3,SA11[27:14]);
dff_c #("numbits-14, celltype, group)
store11L(loadL[11],CLR3,PADDRBuf[13:0],SA11[13:0]);
equal #(numbits, celltype, group)
comparel 1(RADDRBuf,SA11,local[11]);

/* This is line 12*/

- dff_p #('numbits-14, celltype, group)
store12U(loadU[12],PADDRBuf[27:14],PRE4,SA12[27:14]);

dff_c #("numbits-14, celltype,” group)
store12L(loadL[12],CLR4,PADDRBuf[13:0],SA12[13:0]);.

equal #(numbits, celltype,” group)
comparel2(RADDRBuf,SA12,local[12]);

/* This is line 13*/
dff_p #('numbits-14, celltype,”group)
store13U(loadU[13],PADDRBuf[27:14],PRE4,SA13(27: 14])
dff_c #('numbits-14, celltype,” group)
store13L(loadL[13],CLR4,PADDRBuf[13:0],SA13[13:0]);
equal #(numbits, celltype,” group)
comparel 3(RADDRBuf,SA13,local[13]);

81

/* This is line 14*/

dff_p #(C numbits-14," celltype, group)
store14U(loadU[14],PADDRBuf[27:14],PRE4,SA14[27:14]);

dff_c #('numbits-14, celltype," group)
store14L(loadL[14],CLR4,PADDRBuf[13:0],SA14[13:0]);

equal #(numbits, celltype,” group)
compare14(RADDRBuf,SA14,local[14]);

/* This is line 15%/
dff_p #('numbits-14," celltype,” group)
store15U(loadU[15],PADDRBuf[27:14],PRE4,SA15[27:14]);
dff_c #('numbits-14, celltype, group)
store15L(loadL[15],CLR4,PADDRBuf[13:0],SA15[13:0]);
equal #(numbits, celltype,” group)
comparel S(RADDRBuf,SA15,local[15]);

/* Buffer Output */
buff #(16,0, group2)

BUF16(local,hitbus);

endmodule

82

/* Hit detector module, structural description in verilog
*% [hitmod.v] file
*/

“define numbits 28

“define group "Bufbank"

module hitmod(PADDR,RADDR,store Addr,init,hitbus);
// epoch set_attribute FIXEDBLOCK =1

input [(numbits-1:0] PADDR,RADDR;

input [7:0] storeAddr;

input init;
output [127:0] hitbus;

wire [127:0] load,LOCAL,decout;
wire [7:0] storeAddrbuf;
wire [‘numbits-1:0] PADDRbufl,PADDRbuf2,RADDRbuf1,RADDRbuf2;

buff #(numbits,0, group)
BUF11(PADDR,PADDRbuf1);
buff #(numbits,0, group) v
BUF12(PADDR,PADDRbuf2);
buff #(numbits,0, group)
BUF13(RADDR,RADDRbuf1);
buff #(numbits,0, group)
BUF14(RADDR,RADDRbuf2);
buff #(8,0, group)
BUF15(storeAddr,store Addrbuf);

stdbuf BUF16(init,initbuf);

stdbuf BUF17(initbuf,initbuf1);
stdbuf BUF18(initbuf,initbuf2);
stdbuf BUF19(initbuf,initbuf3);
stdbuf BUF20(initbuf,initbuf4);

&3

/* Decode load address */
decoder #(8,128,"decoder8x128.codefile")
DECI (storeAddrbuf,decout);

buff #(128,0,"AUTO")
BUF21(decout,load);

/* Storage Banks */

// epoch pre_compiled pbank
pbank BANKO(PADDRbufl,RADDRbuf1,load[15:0],initbuf1,LOCAL[15:0]);

// epoch pre_compiled pbank
pbank BANK1(PADDRbufl,RADDRbuf1,load[31:16],initbuf1,LOCAL[31:16]):

// epoch pre_compiled pbank
pbank BANK2(PADDRbufl, RADDRbuf1,load[47:32],initbuf2, LOCAL[47:32]);

// epoch pre_compiled pbank
pbank BANK3(PADDRbufl,RADDRbuf1,load[63:48],initbuf2, LOCAL[63:48]);

// epoch pre_compiled pbank
pbank BANK4(PADDRbuf2,RADDRbuf2,load[79:64],initbuf3,LOCAL[79:64]);

// epoch pre_compiled pbank
pbank BANKS5(PADDRbuf2, RADDRbuf2,load[95:80],initbuf3,LOCAL[95:80]);

// epoch pre_compiled pbank
pbank BANK6(PADDRbuf2,RADDRbuf2,load[111:96],initbuf4, LOCAL[111:96]);

// epoch pre_compiled pbank
pbank BANK7(PADDRbuf2,RADDRbuf2,load[127:112],initbuf4, LOCAL[127:112]):
/* Buffer Output */
buff #(128,0, group)
BUF22(LOCAL,hitbus);

endmodule

84

/* 8 x 3 encoder module, structural description in verilog
** [encoder.v]

*/
module encoder8x3(IN,EN,LADDR,GSL,GSH);
// epoch set_attribute FIXEDBLOCK =0

input [7:0] IN;
input EN;

output [2:0] LADDR;
output GSL,GSH;

wire [7:0] BIN;
supplyl VDD;

/* find out if "got something" */
stdor4 U1 (IN[O],IN[1],IN[2],IN[3],GSL);
stdor4 U2 (IN[4],IN[5],IN[6],IN[7],GSH);

/* Buffer and invert inputs*/

buff #(7,0,"AUTO") U3 (IN[7:1],BIN[7:1]);
stdinv U4 (BIN[6],bin6);

stdinv U5 (BIN][5],bin5);

stdinv U6 (BIN[4],bin4);

stdinv U7 (BIN[2],bin2);

/* Encode with bit7 highest priority */

stdnord U8 (BIN[4],BIN[5],BIN[6],BIN[7],addrlow2);
stdinvtri U9 (EN,addrlow2,LADDR[2));

stdaoi3333 U10 (BIN[2],bin4,bin5,BIN[3],bin4,bin5,
BIN[6],VDD,VDD,BIN[7],VDD,VDD,addrlow1);
stdinvtri U11 (EN,addrlow1,LADDR[1]);
stdaoid4444 U12 (BIN[1],bin2,bin4,bin6,BIN[3],bin4,bin6,VDD,
BIN[5],bin6,VDD,VDD,BIN[7],VDD,VDD,VDD,addrlow0);
stdinvtri U13 (EN,addrlow0,LADDR[0]);

endmodule

85

/* 64 x 6 encoder module, structural description in verilog
** This makes use of 8 instances of encoder8x3 module
** [encoder.v]

*/

module encoder64x6 (IN,GENHADDR,GGS nggs);

// epoch set_attribute FIXEDBLOCK = 0

input [63:0] IN;
input GEN;

output [5:0] HADDR;
output GGS,nggs;

supplyl VDD;
/* find out if group "got something" */

encoder8x3 encO(IN[7:0],ENO,HADDR[2:0],GSL0,GSHO);

encoder8x3 encl1(IN[15:8],EN1,HADDR[2:0],GSL1,GSH1);
encoder8x3 enc2(IN[23:16],EN2,HADDR[2:0],GSL2,GSH2);
encoder8x3 enc3(IN[31:24],EN3,HADDR[2:0],GSL3,GSH3);
encoder8x3 enc4(IN[39:32],EN4,HADDR[2:0],GSL4,GSH4);
encoder8x3 enc5(IN[47:40],EN5,HADDR[2:0],GSL5,GSH5);
encoder8x3 enc6(IN[55:48],EN6,HADDR[2:0],GSL6,GSH6);
encoder8x3 enc7(IN[63:56],EN7,HADDR[2:0],GSL7,GSH7);

stdor4 U14 (GSLO,GSL1,GSL2,GSL3,gshl1);
stdor4 U15 (GSL4,GSL5,GSL6,GSL7,gshl2);
stdor4 U16 (GSHO,GSH1,GSH2,GSH3,gshl3);
stdor4 U17 (GSH4,GSH5,GSH6,GSH7,gshl4);
stdor4 U18 (gshll,gshi2,gshl3,gshl4,GGS);
stdnor4 U19 (gshll,gshl2,gshl3,gshl4,nggs);

/* If group is enabled, enable appropriate subgroup
subgroup enc7 has higher priority. */

// enable enc7 if it got something
stdor2 U20 (GSL7,GSH7,gs7);
stdnor2 U21 (GSL7,GSH7,ngs7);
stdand2 U22 (gs7,GEN,EN7);

86

// enable enc6 if not.gs7,but gs6
stdor2 U23 (GSL6,GSH6,gs6);
stdnor2 U24 (GSL6,GSHG6,ngs6);
stdand2 U25 (ngs7,gs6,tmpb);
stdand2 U26 (tmp6,GEN,ENG6);

// enable enc5 if not.gs7 and not.gs6, but gs5
stdor2 U27 (GSLS5,GSHS,gsS5);

stdnor2 U28 (GSL5,GSHS5,ngsS);

stdand3 U29 (ngs7,ngs6,gs5,tmp5);

stdand2 U30 (tmp5,GEN,ENS);

// enable enc4 (by same reasoning as above)
stdor2 U31 (GSL4,GSH4,gs4);

stdnor2 U32 (GSL4,GSH4,ngs4);

stdand3 U33 (ngs7,ngs6,gs4,tmp4);
stdand3 U34 (tmp4,ngs5,GEN,EN4);

// enable enc3

stdor2 U35 (GSL3,GSH3,gs3);

stdnor2 U36 (GSL3,GSH3,ngs3);
stdand4 U37(ngs7,ngs6,ngsS,gs3,tmp3);
stdand3 U38 (tmp3,ngs4,GEN,EN3);

// enable enc2

stdor2 U39 (GSL2,GSH2,gs2);

stdnor2 U40 (GSL2,GSH2,ngs2);
stdand4 U41 (ngs7,ngs6,ngs5,ngs4,tmp);
stdand2 U42 (ngs3,gs2,tmp2);

stdand3 U43 (tmp,tmp2,GEN,EN2);

// enable encl

stdor2 U44 (GSL1,GSH1,gs1);
stdnor2 U45 (GSL1,GSH1,ngs1);
stdand3 U46 (ngs3,ngs2,gs1,tmpl);
stdand3 U47 (tmp,tmp1,GEN,EN1);

// enable enc0

stdor2 U48 (GSLO,GSHO,gs0);

stdand4 U49 (ngs3,ngs2,ngs1,gs0,tmp0);
stdand3 US50 (tmp,tmp0,GEN,ENO);

87

/* Encode address of selected subgroup */
// encT highest priority
stdnor4 US1 (gs4,gs5,gs6,gs7,addrhigh2);
stdinvtri U52 (GEN,addrhigh2, HADDR[5));

stdaoi3333 US3 (gsZ,ngs4,ngs5,gs3,ngs4,ng55,
gs6,VDD,VDD,gs7,VDD,VDD,addrhighl);
stdinvtri U54 (GEN,addrhighl, HADDR{[4));

stdaoi4444 US55 (gs1,ngs2,ngs4,ngs6,gs3,ngs4,ngs6,VDD,
gs5,ngs6,VDD,VDD, gs7,VDD,VDD,VDD,addrhigh0);
stdinvtri U56 (GEN,addrhigh0,HADDR[3]);

endmodule

/* 128 x 7 encoder module, structural description in verilog
** This makes use of 2 instances of encoder64x6 module

** [encmod.v]

*/

module encoder (IN,HITADDR,HIT);

// epoch set_attribute FIXEDBLOCK = 1

input [127:0] IN;
output [6:0] HITADDR;
output HIT;

/* find out if there is a hit */

encoder64x6 groupO(IN[63:0], GENO,HITADDR[5:0],GGS0,nggs0);
encoder64x6 group1(IN[127:64],GEN1,HITADDR(5:0],GGS1,nggs1);
stdor2 U57 (GGS0,GGS1,HIT);

/* Enable group, group1 has higher priority */
// enable groupl if it got something
stdbuf U58 (GGS1,GEN1);

// enable group? if not.GGS1, but GGSO
stdand2 U59 (nggs1,GGS0,GENO);

/* Find Hit Address msb*/
assign HITADDR[6] = GGS1;

endmodule

88

/* Predict module, structural description in verilog
** [Predict.v] file

*/

“define group "Predicter"
“define group2 "Buffers"

module predict(Raddr,lineaddr,store,predict,prediction);

// epoch set_attribute FIXEDBLOCK = 1

input [26:0] Raddr;

input [6:0] lineaddr;

input store,predict;

output [26:0]prediction;

wire [27:0] operandA,operandB,Result;
wire [26:0] invaddr;

wire [5:0] line,Rline,Wline;

supply0 grnd;

supplyl VDD;

/* Buffer and invert some inputs */
bufinv #(27,0,"group2)

addr_buf (Raddr,invaddr);

buff #(6,0, group2)

line_buff (lineaddr[5:0],line);

buff #(6,0, group2)

Read_buff (line,Rline);

buff #(6,0, group2)

write_buff (line,Wline);

stdbuf bufl (lineaddr[6],highreg);

stdbufinv INV1 (lineaddr[6],lowreg);

89

/* Create a 128-word regfile, using two regfiles of 64 words each */

regfilelr #(27,64,6, group)
registerO(invaddr,Rline,REO,Wline, WEQ,operandB[26:0]);
regfilelr #(27,64,6, group)

register 1 (invaddr,Rline,RE1,Wline, WE1,0perandB[26:(0]):

assign operandB[27]= grnd;

/* Decode enable signals */

stdand2 ANDrl(highreg,predict,E1);
stdbuf buf2 (E1,RE1);

stdand2 ANDrO(lowreg,predict,E2);
stdbuf buf3 (E2,REQ);

stdand2 ANDw1(highreg,store,E3);
stdbuf bufd4 (E3,WE1);

stdand2 ANDwO(lowreg,store,E4);
stdbuf buf5 (E4,WEOQ);

/* multiply Operand A by 2 */
assign operandA[27:1] = Raddr;
assign operandA[0] = grnd;

/* Predict value */
addcla #(28,0, group) :

predicter (operandA,operandB,VDD,cout,Result);
assign prediction = Result[26:0];

endmodule

90

/* Finite State Machine for predicter module, functional description in verilog

** [pmfsm.v] file
*/

module pmfsm (clk,status,match,nomatch,init,next,back,par,add,pred);

// epoch set_attribute FIXEDBLOCK =1

“define encode
“define low 1'b0
“define high 1'bl

parameter // epoch enum stat

input
input
output

reg
reg

idle0 = 5'b00000,
stnby1 = 5'b00010,
suml = 5'b00011,
waitl = 5'b00111,
store2 = 5000110,
stnby2 = 5'b00100,
storel = 5'b00101,
Backl = 5500001,
store3 = 5001001,
Next =5'b01000,
store4 = 5001100,
wait2 =5'p01101,
sum?2 =5'Db01111,
stnby3 =5'b01011,
idlel =5'b01010,
Back2 =5'b01110,
dc_state = 5'bxxxxx;

[1:0] status;
clk,match,nomatch,init;
next,back,par,add,pred;

next,back,flag,next_flag,par,pred,add;
[4:0] /* epoch enum stat */ state,next_state;

91

always @ (posedge clk or negedge init)

begin
if (linit)
begin
flag = “low;
state=idle0;
il
else
begin
flag = next_flag;
state= next_state;
end
end
always @(state or status or match or nomatch or flag)
begin
next = "low;
par = low;
pred = "low;
back = "low;
add ="low;

next_flag = flag;
case (state)

idle(: begin
if (match != nomatch)
begin
if (match) next_state = stnby]1;
else next_state = stnby2;
end
else
next_state = idle0;
end

stnbyl: begin
if (status[1] == 0) next_state = suml;
else next_state = stnbyl;
end

suml: begin
add = "high;
next_state = waitl;
end

92

waitl: begin
add = "high;
next_state = storel;
end

storel: begin
add = "high;
par = "high;
pred= "high;
next_state = Backl;
end

Backl: begin
back = “high;
next_state = idle0;
end

stnby2: begin
if (status[1] == 0) next_state = store2;
else next_state = stnby2;
end

store2: begin
par = "high;
next_state = Back?2;
end

Back2: begin
back = “high;
next_state = idlel;
end

idlel: begin
if (match != nomatch)
begin
next_state = stnby3;
if (match) next_flag = "high;
else next_flag = "low;
end
else
next_state =idlel;
end

93

endmodule

stnby3: begin
if (status[1] == 0) next_state = sum2;
else next_state = stnby3;
end

sum2: begin

add = high;

next_state = wait2;
end

wait2: begin
add = "high;
if (flag == 1) next_state = store4;
else next_state = store3;
end

store4: begin
add = "high;
par = "high;
pred="high;
next_state = Back?2;
end

store3: begin :
add = "high;
par = "high;
pred="high;
next_state = Next;
end

Next: begin
next = "high;
next_state = idle0;
end

default: begin
next_state = dc_state;
next_flag = 1'bx;
end
endcase
end

94

/* Replacing Algorithm module, structural description in verilog
*¥ [linerep.v] file
*/

module linerep (clk,Lnum,match,next,back,init,status,line);
// epoch set_attribute FIXEDBLOCK = 1

“define encode

“define low 1'b0

“define high 1'bl

“define valid_ready 2'b00
“define valid_notready 2'b01
“define notvalid_ready 2'b10
“define notvalid_notready 2'b11

parameter // epoch enum stat

ready = 4'b0000,
load1 =4'b0010,
Count =4'b0011,
read =4'v0001,
inspt =4'b0101,
clear =4Db0111,
tmpl =4'b0100,
waitl =4'b1000,
load2 =4'b1010,
set =4'b1011,
tmp2 =4'b1111,
tmp3 =4'b1110,
Back =4'b1100,

d¢_state= 4'bx;

input [6:0] Lnum;

input clk,match,back,next,init;
output [1:0] status;

output [6:0] line;

reg flagw flagr,count,new,Lhit;

reg sell,sel2,next_sell,next_sel2;

reg [1:0] status, next_status;

reg [3:0] /*epoch enum stat */ state,next_state;

95

wire [6:0] muxout,oldcount,newcount,ROMline,HITline;

supply0 GND;
supplyl VDD;

/* Data Path */
stdbuf bufl(init,initbuf);

rom #(7,128,7,"counter.codefile",8)
counter (oldcount,newcount);
dff_c #(7,1,"DATAP")
feedreg (count,initbuf,newcount,oldcount);
dff_c #(7,1,"DATAP")
ROMreg(new,initbuf,newcount,ROMline);
dff_c #(7,1,"DATAP")
HITreg(Lhit,initbuf,Lnum,HITline);
mux2 #(7,1,"DATAP")
Lmux (ROMline,HITline,sel2,line);
equal #(7,1,"DATAP")
compare(ROMline,HITline,comp);
mux2 #(7,1,"DATAP")
Fmux (newcount,Lnum,sell,muxout);
stdmux2 Bmux (GND,VDD,sell,bit);
hsramoe #(1,128,7,2,0)
FLAGS(muxout,bit,flagr,flagw,flag);

/* State Machine */

always @ (posedge clk or negedge initbuf)
begin
if (!initbuf)
begin
state = ready;
status = “valid_ready;

sell ="low;
sel2 ="low;
end
else
begin

state = next_state;

96

status = next_status;
sell =next_sell;
sel2 = next_sel2;
end
end

always @ (state or next or back or match or flag or comp or status or sell or sel2)
begin
count = "low;
new = low;

Lhit ="low;
flagr = “high;
flagw = “high;

next_sell =sell;
next_sel2 = sel2;
next_status = status;

case (state)

ready: begin
if (match != next)
begin

next_status = “notvalid_notready;

if (next) next_state = load1;

else

begin

next_state = waitl;
next_sell = "high;
next_sel2 = "high;

end
end
else
next_state = ready;
end
loadl: begin

new = high;
flagw = “low;

next_state = Count;
next_status= "valid_notready;
end

97

Count:

read:

inspt:

clear:

tmpl:

. waitl:

load2:

set:

begin
count = "high;
next_state = read;
end

begin
flagr = "low;
next_state = inspt;
end

begin
flagr = "low;
if (flag) next_state = clear;
else next_state = tmp1;
end

begin
flagw = "low;
next_state = Count;
end

begin
next_state = ready;
next_status = “valid_ready;
next_sel2 = low;

end

next_state = load2;

begin
Lhit = “high;
next_status= "valid_notready;
next_state = set;

end

begin
flagw = “low;
if (comp)
begin
next_sell ="low;
next_state= Count;

98

tmp2:

tmp3:

Back:

default:

endcase
end

endmodule

end
else next_state= tmp2;
end

next_state = tmp3;

next_state = Back;

begin
if (back)
begin
next_sell = "low;
next_state= tmpl;
end
else next_state= Back;
end

begin
next_state = dc_state;
next_status = 2'bx;
next_sell = 1'bx;
next_sel2 = 1'bx;

end

99

/* ROM.codefile, Functional description in verilog
** [counter.codefile] file
*/

// PLA TABLE
// output
0000001 // position 0000000
0000010 // position 0000001
0000011
0000100
0000101
0000110
0000111
0001000
0001001
0001010
0001011
0001100
0001101
0001110
0001111
0010000
0010001
0010010
0010011
0010100
0010101
0010110
0010111
0011000
0011001
0011010
0011011
0011100
0011101
0011110
0011111
0100000
0100001
0100010
0100011
0100100

100

0100101
0100110
0100111
0101000
0101001
0101010
0101011
0101100
0101101
0101110
0101111
0110000
0110001
0110010
0110011
0110100
0110101
0110110
0110111
0111000
0111001
0111010
0111011
0111100
0111101
0111110
0111111
1000000
1000001
1000010
1000011
1000100
1000101
1000110
1000111
1001000
1001001
1001010
1001011
1001100
1001101
1001110
1001111

101

1010000
1010001
1010010
1010011
1010100

1010101
1010110
1010111
1011000
1011001
1011010
1011011
1011100
1011101
1011110
1011111
1100000
1100001
1100010
1100011
1100100
1100101
1100110
1100111
1101000
1101001
1101010
1101011
1101100
1101101
1101110
1101111
1110000
1110001
1110010
1110011
1110100
1110101
1110110
1110111
1111000
1111001
1111010

102

1111011
1111100
1111101
1111110
1111111 //position 1111110
0000000 // position 1111111

// END TABLE

103

/* Decoder8x128.codefile, Functional description in verilog
** [Decoder8x128.codefile] file

*/
// PLA TABLE
/] sel0 sell sel2 sel3 sel4 sel5 sel6 EN
00000001 //line 0
10000001 // line 1
01000001 // line 2
11000001 // line 3
00100001 // line 4
10100001 // line 5
01100001 // line 6
11100001 /[line 7
00010001 // line 8
10010001 //line 9
01010001 // line 10
11010001 //line 11
00110001 //line 12
10110001 //line 13
01110001 // line 14
11110001 // line 15
00001001 // line 16
10001001 // line 17
01001001 // line 18
11001001 //line 19
00101001 // line 20
10101001 // line 21
01101001 // line 22
11101001 // line 23
00011001 // line 24
10011001 - // line 25
01011001 // line 26
11011001 // line 27
00111001 // line 28
10111001 // line 29
01111001 // line 30
11111001 // line 31
00000101 // line 32
10000101 // line 33
01000101 // line 34
11000101 // line 35

104

00100101
10100101
01100101
11100101
00010101
10010101
01010101
11010101
00110101
10110101
01110101
11110101
00001101
10001101
01001101
11001101
00101101
10101101
01101101
11101101
00011101
10011101
01011101
11011101
00111101
10111101
01111101
11111101
00000011
10000011
01000011
11000011
00100011
10100011
01100011
11100011
00010011
10010011
01010011
11010011
00110011
10110011
01110011

// line 36
// line 37
// line 38
// line 39
// line 40
// line 41
// line 42
// line 43
// line 44
// line 45
// line 46
// line 47
// line 48
// line 49
// line 50
// line 51
// line 52
// line 53
// line 54
// line 55
// line 56
// line 57
// line 58
// line 59
// line 60
// line 61
// line 62
// line 63
// line 64
// line 65
// line 66
// line 67
// line 68
// line 69
// line 70
// line 71
// line 72
// line 73
// line 74
//line 75
// line 76
// line 77
// line 78

105

11110011
00001011
10001011
01001011

11001011

00101011
10101011
01101011
11101011
00011011
10011011
01011011
11011011
00111011
10111011
01111011
11111011
00000111
10000111
01000111
11000111
00100111
10100111
01100111
11100111
00010111
10010111
01010111
11010111
00110111
10110111
01110111
11110111
00001111
10001111
01001111
11001111
00101111
10101111
01101111
11101111
00011111
10011111

// line 79
// line 80
// line 81
// line 82

// line 83

// line 84
// line 85
// line 86
// line 87
// line 88
// line 89
// line 90
// line 91
// line 92
// line 93
// line 94
// line 95
// line 96
// line 97
// line 98
// line 99
// line 100
// line 101
// line 102
// line 103
// line 104
// line 105
// line 106
// line 107
// line 108
// line 109
// line 110
//line 111
//line 112
//line 113
// line 114

. //line 115

//line 116
//line 117
//line 118
//line 119
// line 120
// line 121

106

01011111
11011111
00111111
10111111
01111111
11111111

// END TABLE

// line 122
// line 123
// line 124
// line 125
// line 126
// line 127

107

108

APPENDIX C. VERILOG TESTSHELL FILES

This appendix contains the verilog testeshell code to simulate all the implemented

modules of the Predicted Read Cache IC.

) R 1 10) 4 18 10 P pp.110-113
2. PbhanKkiv.....ciiieiiiiiiiiiiiiiiiii ittt pp.114-116
3. Hitmoda.v......ieiiiieiniininenrneceraoccasnssnsnss pp-117-119
4., Encoderd.vcceiiiiiiiiiiiiiiiiiiiiiiiiitiiaenas pp-120-122
5. Predicti.v .c.iuiriiiiiiiiiiiiiiiiiiiiiii it pp-123-126
6. Pmfsmuiv.....oiiiiiiiiiiiii i i i i i it iee e pp.127-129
7. LInerepd.V.....ieieiiniiieineeesosncocasssonosacanss pp-130-132

109

[] e e

// File : /tmp_mnt/h/kepler_u0/meaguila/projects/PRC2/vout/snoop.i.v
I/ Date : Fri Feb 10 15:39:24 1995

/| Program s vrigout 1.1

// Project : /tmp_mnt/h/kepler _u0/meaguila/projects/PRC2

// Design : snoop

[[ommm e e

“resetall

“timescale Ins/ 1ps
module snoop_testshell;

reg clk, TS,CI,TBST,ARTRY: hit,en,next,back,init;
reg [31:0] Raddr;

reg [3:0] prty;

reg [4:0] TT;

wire PE,AACK,Abort,flush, CAR,match,nomatch;
wire [2:0] snum;

wire [3:0] prtyout;

wire [27:0] addr;

snoop inst_snoop (.clk(clk), .match(match), .nomatch(nomatch), .init(init), .TS(TS),
.CI(CD), .TBST(TBST), .ARTRY(ARTRY), .hit(hit), .en(en), .next(next),
.back(back), .PE(PE), . AACK(AACK), .TT(TT), .Abort(Abort),
.flush(flush), .CAR(CAR), .Raddr(Raddr), .addr(addr), .prty(prty),
.prtyout(prtyout), .snum(snum)); 4

initial
begin
// start tasks

Waves;
Monitor;

// test data

clk = 0;
init= 1;

#2
init= 0;

110

#4
init= 1;

#4

Raddr= 32'h00000001;
prty=4Dl1111;

TS =0;

TT = 5'h0e;

Cl=1;

#15
TS =1;

#2
TS =1;

#50
Raddr=32'h00000002;
prty=4'b1110;

TS =0;

TT = 5'h0e;

Cl=1;

#15
TS =1;

#2
TS =1;

#50

Raddr= 32'h00000003;
prty=4'bl111;

TS =0;

TT = 5'h0e;

Cl=1;

#15
TS =1;

#15
hit =0;

111

#15
hit=1;

#15
hit=0;

#50

Raddr= 32'h00000004;
prty=4'b1110;

TS =0;

TT = 5'hle;

Cl=1;

TBST=0;

#15
TS =1;
back = 0;

next = 0;

#2
TS =1;

#30
back = 1;

#50

Raddr= 32'h00000005;
prty=4'bl111;

TS =0;

TT = 5'hle;

Cl=1;

TBST=0;

#15
TS =1;

#15
hit =0;

#15
hit=1;

#15

112

hit =0;
next=0;
ARTRY =0;

#20
next = 1;

ARTRY =1;

#15
next=0;

#50
Raddr= 32'h00000000;
$display("*** DONE ***");

$stop;
$finish;

end /* initial */
always #7.5 clk= ~clk;

// define tasks
/I -

task Waves;

$gr_waves ("clk%h" clk,"CAR%b",CAR,"match%b",match, "nomatch%b",nomatch,
"flush%b" flush,"Abort%b",Abort,"PE%b",PE,"AACK%b",AACK,
"addr%h",addr,"snum%h",snum);

endtask

task Monitor;
begin

$fmonitor(1,$time," clk=%h " clk," CAR%b ",CAR," match%b ",match,"
nomatch%b ",nomatch," flush%b ",flush," Abort%b ",Abort,
"PE%b ",PE," AACK%b ",AACK," addr%h ",addr," snum%h ",snum);
end
endtask

endmodule

113

/l File : /tmp_mnt/h/kepler_u0/meaguila/projects/PRC2/vout/pbank.i.v
/[Date : Fri Feb 10 15:39:24 1995

/I Program : vrlgout 1.1
// Project : /tmp_mnt/h/kepler_u0/meaguila/projects/PRC2
// Design : pbank

“resetall
“timescale 1ns/ 1ps

module pbank_testshell;

reg [27:0] RADDR,PADDR;
reg [15:0] storeAddr;

reg init;

wire [15:0] hitbus;

pbank inst_pbank (RADDR(RADDR), .storeAddr(storeAddr), .init(init),
.hitbus(hitbus), . PADDR(PADDR));

1nitial
begin
// start tasks
Waves;
Monitor;
// test data
RADDR = 28'H0000001;
#2
nit=1;

storeAddr = 16'H0000;

#1
init = 0;

#5

114

init =1;

#2
RADDR= 28'H0000002;

#4
PADDR= 28'H0000003;

#2
storeAddr= 16'HO001;

#2
storeAddr= 16'HO000;

#4
RADDR = 28'H0000003;

#4
PADDR= 28'H0000005;

#2
storeAddr= 16'H8000;

#4
RADDR = 28'H0000005;
storeAddr= 16'H0000;

#8
RADDR = 28'H0000007;

#4
PADDR = 28'H0000007;

#2
storeAddr= 16'H0002;

#4
RADDR = 28'H0000007;
storeAddr= 16'H0000;

#6
RADDR = 28'H0000007;

115

$display("*** DONE ***"),

$stop;
$finish;

end /* initial */

// define tasks
/! --- — e

task Waves;

$gr_waves ("RADDR%h",RADDR,"PADDR%h",PADDR,
"init%b",init,"storeAddr%h" storeAddr,
"hitbus%h",hitbus);
endtask

task Monitor;
begin

$fmonitor(1,$time," RADDR%h ", RADDR," PADDR%h "_PADDR,
" init%b ",init," storeAddr%h ",storeAddr,
" hitbus%h " hitbus);
end
endtask

endmodule

116

[[-mmnmmmmmmm e e e

I File : /tmp_mnt/h/kepler_u0/meaguila/projects/PRC2/vout/hitmod.i.v
// Date : Fri Feb 10 15:39:24 1995

// Program : vrigout 1.1

// Project : /tmp_mnt/h/kepler_u0/meaguila/projects/PRC2

// Design : hitmod ’

[[mmmnnmmmmemme e e ee

“resetall

“timescale 1ns/ 1ps
module hitmod_testshell;

reg [27:0] RADDR,PADDR;
reg [7:0] storeAddr;

reg init;

wire [127:0] hitbus;

hitmod inst_hitmod (RADDR(RADDR), .storeAddr(storeAddr), .init(init),
.hitbus(hitbus), PADDR(PADDR));

initial

begin
// start tasks

Waves;

Monitor;
// test data

RADDR = 28'H0000001;

#2

nit=1;

storeAddr = 8'HOO;

#1
init = 0;

#8

117

init = 1;

#2
RADDR= 28'H0000002;

#4
PADDR= 28'H0000003;

#2
storeAddr= 8'H80;

#4
store Addr= 8'HOOQ;

#6
RADDR = 28'H0000003;

#8
PADDR= 28'H0000005;

#2
store Addr= 8'Hff;

#4
store Addr= §'HOO;

#8
RADDR = 28'H0000005;

#8
PADDR = 28'H0000007;

#2
storeAddr= 8'H81;

#4
store Addr= §8'HOO;

#6
RADDR = 28'H0000007;

#3
PADDR = 28'H0000007;

118

#2
store Addr= 8'Hff;

#4
storeAddr= 8'HOO;

#6 :
RADDR = 28'H0000007;

#6
RADDR = 28'H0000008;
$display("*** DONE ***");

$stop;
$finish;

end /* initial */

// define tasks
/- mmmmmmmeememme s -

task Waves;

$gr_waves ("RADDR%h",RADDR,"PADDR%h",PADDR,
"init%b",init,"storeAddr%h",storeAddr, "hitbus%h",hitbus);
endtask

task Monitor;
begin
$fmonitor(1,$time," RADDR%h ",RADDR," PADDR%h ",PADDR,
" init%b ",init," storeAddr%h ",storeAddr," hitbus%h ",hitbus);
end
endtask

endmodule

119

/ File : /tmp_mnt/h/kepler_u0/meaguila/projects/PRC2/vout/encoder.i.v
Il Date : Fri Feb 10 15:39:24 1995
/| Program s vrlgout 1.1

// Project : /tmp_mnt/h/kepler_u0/meaguila/projects/PRC2
// Design : encoder

T

“resetall

“timescale Ins/ 1ps
module encoder_testshell;
reg [127:0] hitbus;
wire [6:0] hitaddr;
wire hit;
encoder inst_encoder (IN(hitbus), .HITADDR (hitaddr), .HIT (hit));
initial
begin
// start tasks
Waves;
Monitor;
// test data

hitbus= 128'H0000000000000000;

#10
hitbus= 128 Hffffffffffffff;

#10
hitbus= 128'H0000000000000000;

#10
hitbus= 128'HO000000000000000;

#10
hitbus= 128'H0000000000000000;

120

#10
hitbus= 128" HfffffHfffffEfLf;

#10
hitbus= 128'H0000000000000000;

#10
hitbus= 128'H0000000000000000;

#10
hitbus= 128'H0000000000000000;

#10
hitbus= 128'HffffffffFEfEEffTfEfT;

#10
hitbus= 128'H0000000000000000;

#10
hitbus= 128'H0000000000000000;

#10
hitbus= 128'H0000000000000000;

#10
WL PA NS tidsisiisitisiisiivisvisiiisiin

#10
hitbus= 128'HO000000000000000;

#10
hitbus= 128'HO000000000000000;

#10
hitbus= 128'HO000000000000000;

$display("*** DONE ***");

$stop;
$finish;

end /* initial */

121

// define tasks
J] -eeeee s

task Waves;
$gr_waves ("hitbus%h" hitbus,"hitaddr%h" hitaddr, "hit%b" hit);
endtask
task Monitor;
begin
$fmonitor(1,$time," hitbus=%h " hitbus," hitaddr=%h " hitaddr," hit=%b " hit);

end
endtask

endmodule

122

// File : /tmp_mnt/h/kepler_u0/meaguila/projects/PRC2/vout/predict.i.v
// Date : Fri Feb 10 15:39:24 1995

// Program : vrigout 1.1

// Project : /tmp_mnt/h/kepler_u0/meaguila/projects/PRC2

// Design : predict »

[[mmummmmmmm e e

“resetall

“timescale 1ns/ 1ps
module PDDRbank_testshell;

reg [27:0] RADDR,RADDR;
reg [6:0] storeAddr;

reg init;

wire [16:0] hitbus;

PADDRbank inst. PADDRbank (.Raddr(Raddr), .lineaddr(lineaddr),
.predict(predict), .prediction(prediction), .store(store));
initial
begin
// start tasks
Waves;
Monitor;

// test data

lineaddr = 7'HOO;

store = (;

predict = 0;

#4;

Raddr = 27'HO000001;
#2;

store = 1;

123

#2:
store = 0;

#4;
Raddr = 27'H0000002;

#2;
predict = 1;

#5;
predict = 0;
store = 1;

#2;
store = 0;

#4;
Raddr = 27'HO0000003;

#2:
predict = 1;

#5;
predict = 0;
store = 1;

#2:
store = 0;

#4;
Raddr = 27'H0000005;

#2;

predict = 1;

#5;
predict = 0;
store = 1;

#2;
store = (0

124

#4;
Raddr = 27'HO000000;

#2;
predict = 1;

#5;
predict = 0;
store = 1;

#2;
store = 0;

#4;
Raddr = 27'HOOfffff;

#2;
predict = 1;

#5;
predict = 0;
store = 1;

#2;
store = 0;

#4;
Raddr = 27'Hffffffd;
lineaddr = 7HO1;

#2;

store =1;
#2:

store = 0;

#4;
Raddr = 27'Hfffffff;

#2;
predict = 1;

125

#5;

predict = 0;
store = 1;
#2:

store = (;

$display("##* DONE ##*"),

$stop;
$finish;

end /* initial */

// define tasks
[-=-====-- = mees

task Waves;

$gr_waves ("RADDR%h" ,Raddr,"lineADDR%h" lineaddr,
"store%b" store,"predict%b",predict ,"prediction%h" prediction);
endtask

task Monitor;
begin
$fmonitor(1,$time," RADDR%h ",Raddr," lineADDR%h " lineaddr,
" store%b ",store," predict%b ",predict ," prediction%h " prediction);
end

endtask

endmodule

126

// File : /tmp_mnt/h/kepler_u0/meaguila/projects/PRC2/vout/pmfsm.i.v
// Date : Fri Feb 10 15:39:24 1995

// Program : vrigout 1.1

/l Project :/tmp_mnt/h/kepler_u0/meaguila/projects/PRC2

// Design : pmfsm

“resetall
“timescale 1ns/ 1ps

module pmfsm_testshell;

reg clk,match,nomatch,init;

reg [1:0] status;

wire back,next,par,add,pred,flag;
wire [3:0] snum;

pmfsm inst_pmfsm (.clk(clk), .match(match), .nomatch(nomatch),
.nit(init), .next(next), .par(par), .add(add), .pred(pred),
.snum(snum), .flag(flag), .status(status), .back(back));

initial

begin

// start tasks
Waves;
Monitor;

// test data

clk=0;
init=1;

match =0;
nomatch = 0;
status = 2'b00;

#5
init=0;

#5

127

init=1;

#5

match =1;

#

status = 2'b01;
#10

match =0;

#80

status = 2'b11;
#20

nomatch =1;
#15

nomatch =0;
#5

status = 2'b01;
#80

status = 2'b11;
#20

match =1;

#5

status = 2'b01;

#10
match =0;

#80
status = 2'b11;

#20
nomatch =1;

#5
status = 2'b01;

128

#10
nomatch =0;

#100
match =1;
nomatch =1;

#15
match =0;
nomatch = 0;

$display("*** DONE #**");

$stop;
$finish;

end /* initial */
always #7.5 clk= ~clk;

// define tasks
[=mmmmm e R

task Waves;

$gr_waves ("clk%h" clk,"status%b",status," "match%b" ,match,
"nomatch%b",nomatch,"init%b",init, "next%b" ,next,"back%b" back,
"par%b",par,"add%b",add,"pred%b",pred,"flag%b" flag,"state%h" ,snum);
endtask

task Monitor;
begin

$fmonitor(1,$time," clk=%h ",clk," status=%Db ",status,” match=%b ",match,
" nomatch=%b ",nomatch," init=%b ",init," next=%b ",next," back%b " back,
" par=%b ",par," add=%b ",add," pred= %b ",pred," flag=%b " flag,
" state=%b ",snum); ‘
end
endtask

endmodule

129

I File : /tmp_mnt/h/kepler_u0/meaguila/projects/PRC2/vout/linerep.i.v
/| Date : Sat Mar 11 17:29:46 1995

/I Program : vrlgout 1.1

/I Project :/tmp_mnt/h/kepler_u0/meaguila/projects/PRC2
// Design :linerep

[[ammimm e — e e mm e eae e ———

“resetall
“timescale 1ns/ 1ps

module linerep_testshell;

reg [6:0] Lnum;
reg back;

reg clk;

reg init;

wire [6:0] line;
reg match;

reg next;

wire [1:0] status;

linerep inst_linerep (.Lnum(Lnum), .back(back), .clk(clk), .init(init), .line(line),
.match(match), .next(next), .status(status));
initial

begin

// start tasks
Waves;
Monitor;

// test data

clk=0;

next= 0;

init= 1;

back = 0;
match=0;
Lnum= 7'H0O;

#2

130

init=0;

#15
init =1;

#10
match = 1;

#6
Lnum= 7'h04;

#9
match = 0;

#75
back = 1;

#15
back = O:

init=1;
while (line[3] == 1'b0)
begin
#120 next = 1;
#15 next=0;
end

$display("*** DONE ***");

$stop;
$finish;

end /* initial */
always #7.5 clk= ~clk;

// define tasks
//

131

task Waves:

$gr_waves ("clk%h" clk,"match%b",match, "next%b",next,"back%b" back,
"init%b",init,"Lnum%h",Lnum,"status%b",status,"line%h",line);

endtask

task Monitor;
begin

$fmonitor(1,$time," clk=%h ",clk," match%b ",match," next%b ",next,
" back%b ",back," init%b ",init," Lnum%h ",Lnum," status%b ",status," line%h " line);

end
endtask

endmodule

132

APPENDIX D. RPB PIN-OUT DIAGRAM

This appendix contains the Read Prediction Buffer Pinout by name and Description

133

PIN # GRID # NAME | ©PIN # GRID # NAME | PIN # GRID # NAME
——————————— ———— | e e |

1 - M-12 F1 | /37 B-8 vdd [<73 H-2 GND
2 (1-11 FO | 438 A-8 GND I .74 H-1 K6
3 /L~12 A0 | /39 c-7 MACE | .75 J-3 K5
4 /K-11 Al | /40 B-7 DV | .76 J-2 K4
5 . K-12 GND | «41 A-7 EWR | - 17 J-1 K3
6 .J-10 A2 | v42 c-6 vdd I .78 K-3 K2
7 J-11 A3 | .43 B-6 GND [/79 K-2 K1
8 LJ-12 A4 | V44 A-6 EMA | .80 K-1 200)
9 H-10 A5 | v45 c-5 ROK 1 81 L-1 F21
10 H-11 A6 | 746 B-5 NDV l .82 M-1 F20
11 JH-12 A7 | v47 A-5 G8 [. 83 L-2 F19
12 .G-10 A8 | /48 c-4 N/C | v 84 M-2 vdd
13 G-11 A9 | 749 B-4 N/C | .85 L-3 F18
14 G-12 Alo0 | /50 A-4 N/C | 86 M-3 F17
15 F-10 All | /51 c-3 N/c | - 87 K-4 F16
16 F-11 Al2 | /52 B-3 G7 | - 88 L-4 GND
17 F-12 Al3 | .53 A-3 vdd | - 89 M-4 F15
18 E-10 Al4 | v54 A-2 G6 | 90 K-5 vdd
19 E-11 al5s | /55 A-1 G5 | .91 L-5 Fl4
20 E-12 Al6 | /56 B-2 G4 1 92 M-5 F13
21 D-10 Al7 | /57 B-1 G3 [- 93 K-6 F12
22 D-11 Al8 | /58 c-2 G2 | . 94 L-6 GND
23 D-12 Al9 | 59 c-1 Gl | - 95 M-6 F1l1
24 C-10 GND | /60 D-3 GO | . 96 K-7 F10
25 c-11 A20 | 61 D-2 H8 [. 97 L-7 GND
26 c-12 A21 I 62 D-1 H7 | - 98 M-7 F9
27 B-12 clkb | “ 63 E-3 H6 | - 99 K-8 F8
28 - A-12 NAV | 7 64 E-2 H5 | . 100 L-8 vdd
29° .B-11 MAC | v 65 E-1 H4 | /101 M-8 F7
30 . A-11 vdd | 66 F-3 H3 | . 102 K-9 vdd
31- .B-10 NRF | .67 F-2 H2 | . 103 L-9 F6
32 A-10 GND | 68 F-1 H1 : 104 M-9 F5
33" /C-9 AV | - 69 G-3 HO | . 105 K-10 F4
34 .B-9 vad | 70 G-2 K8 ! -106 L-10 F3
35 - ,A-9 RDWR | 71 G-1 GND | ~107 M-10 vdd
36 c-8 clka | .72 H-3 K7 | -108 M-11 F2

Functional Names:

A21-A0: Address Bus from CPU

F21-F0: Output of RPB Address MUX to Main Memory
G8-G0: Data Bus from CPU

H8-HO: Data Read from Main Memory

K8-K0: Output of RPB Data MUX to Cache Memory

AV: Address Valid

NAV: Not Address Valid

DV: Data Valid

NDV : Not Data Vvalid

MAC: Memory Access Complete

NRF : No Refresh

RDWR: Not Read/Write

MACE: Memory Access Complete Early
EWR: Enable Write

EMA: Enable Memory Access

ROK: Refresh OK 134

clka: 110000
clkb: 000110
GND: Ground
vdd: +5V

r AL
12 Cll o 3

AR

bl

A=

n2

1 -

= ==
=\ \\\\\\\\\\ / // //////// =
bm@:\\k RENNSRRRNERIOIOIST, /ﬁg
m\\ e
m\\\ §’ % s
Gs:tg\§ / = e
=\ T e
wﬂﬂ:\\\\g L o
= NN e
m§\n —t
> — S-E—_m:xs
WC:‘IE: er L \L_aa:u
\mm

;%W/ \\\\\\\\\\\

ittt

@OEE> 3

3W9-NSF -CLASS/NPS | és

#1: 383U3/Yan /CQCHECONT

PCAIPEM: ™12

30-APR-1993

T

H?'f—._‘.'f-;-'." ffff

oooooooooooo

oooooooooooo
oooooooooooo
oooooooooooo

136

-

l
\

APPENDIX E. EPOCH’S COMMANDS

This appendix contains all the commands necessary to access the Epoch’s Floor-

Planner in order to view the created geometries.

137

The following is an example of how to remotely access a Computer Center machine
(sp254207) and execute Epoch:

ac6:/users/work3/aguilar>> xhost sp254207.cc.nps.navy.mil

$p254207.cc.nps.navy.mil being added to access control list

ac6:/users/work3/aguilar>> rlogin sp254207.cc.nps.navy.mil
login: meaguila

Password:*¥¥%*%¥

There are new Computer Center messages.

Type in ccmsgs to read the new messages.

<102 sp254207(SunOS) /kepler_u0/meaguila> setenv DISPLAY ac6.cs:0.0
<103 sp254207(SunOS) /kepler_u0/meaguila> c¢d projects

<104 sp254207(SunOS) /meaguila/projects> cepoch

Once Epoch’s GUL is display, select from the pull down menu bar;
Project-->project--> open

a pop up window appears. Select (click on) from the “Existing Projects” selection
window the following option:
/tmp_mnt/h/kepler_u0/meaguila/projects/PRC2 c03

click on “OK” push button and the window goes away. From the initial GUI window
select;
Physical Design-->Manual Compile--> Floor Planning...

A new window should appear (it actually takes a few seconds to appear). From the new
window’s pull down menu bar select:
Project Manager-->Parts--> Edit ...

A pop up window appears. The created designs are listed in the “Existing Designs”
selection window. Select desired one, then click OK. A splash window appears. Wait until
the cell is loaded (it may take some time depending on the size of the design). The design
appears as a block level. Use the view-->Geo Viewing --> Expand All option to expand
all the cells. Use the rest of the “view” commands to Zoom-in, un-expand, etc. To exit
select quit from the “Project Manager” option.

138

10
11

12

LIST OF REFERENCES

G.J. Nowicki, “The Design and Implementation of a Read Prediction Buffer,” M.S.
Thesis, U.S. Naval Postgraduate School, Monterey, CA (December 1992).

D.J. Fouts and A. Billingsley, “Predictive Read Caches: An Alternative to On-Chip
Second-Level Caches Memories,” Journal of Microelectronic Systems Integration,
Vol. 2, No. 2, December 1994.

HP16500B/16501A Logic Analysis System, User’s Reference Manual, Hewlet
Packard, Colorado Springs, CO, May 1993.

HP16550A 100-MHz State/S00-MHz Timing Logic Analyzer, User’s Reference
Manual, Hewlet Packard, Colorado Springs, CO, May 1993.

HP16520A/HP16521A Patter Generator, User’s Reference Manual, Hewlet Packard,
Colorado Springs, CO, May 1993.

A. Cockcroft, Sun Performance and Tuning: SPARC and Solaris, Prentice-Hall,
Englewood Cliffs, NJ, 1994.

DSP Architect, User’s Reference Manual, Mentor Graphics Corporation, Beaverton,
OR, 1993.

Verilog-XL,, Student Manual, Cadence Design Systems, Inc., San Jose, CA, October
1990.

Epoch 3.1, User’s Manual, Cascade Designs Automation, Bellevue, WA, 1994.
PowerPC-603, User’s Manual, IBM Microelectronics and Motorola, 1994,

A. S. Tanenbaum, Modern Operating Systems, Prentice-Hall, Englewood Cliffs, NJ.,
pp- 110-111, 1992,

J. F. Wakerly, Digital Design; Principles & Practices, Second Edition, Prentice-
Hall, Englewood Cliffs, NJ., pp. 320-323, 1994.

139

140

INITIAL DISTRIBUTION LIST

. Defense Technical Information Center

Cameron Station
Alexandria, VA 22304-6145

. Dudley Knox Library

Code 52

Naval Postgraduate School
Monterey, CA 93943-5101

. Chairman, Code EC

Department of Electrical and Computer Engineering
Naval Postgraduate School

Monterey, CA 93943-5121

. Chairman, Code CS

Department of Computer Science
Naval Postgraduate School
Monterey, CA 93943-5118

. Dr Douglas Fouts, Code EC/Fs

Department of Electrical and Computer Engineering
Naval Postgraduate School

Monterey, CA 93943-5121

. Dr Timothy Shimeall, Code CS/Sm
Department of Computer Science
Naval Postgraduate School
Monterey, CA 93943-5118

141

